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Abstract

We simplify and extend prior work by Held and Spiel-
berger [CAD 2009, CAD&A 2014]: We use a lineariza-
tion to derive a simple algorithm that computes a spi-
ral path inside of planar shape bounded by straight-
line segments and circular arcs. Our spiral paths
are continuous and without self-intersection, respect
a user-specified maximum step-over distance, start in
the interior and end at the boundary of the shape.
We also extend this basic algorithm to double spirals
that start and end at the boundary.

1 Introduction

Several applications require to cover a planar shape
by moving a circular disk along a path. E.g., in ma-
chining applications the disk models the cross-section
of a tool and the area models a so-called pocket. Sim-
ilarly, the disk may represent the area covered by a
spray nozzle or the area of visibility of a camera device
used for aerial surveillance.
Traditional strategies for path generation include

zigzag patterns and the use of offset curves to form
contour-parallel patterns. Common to these tradi-
tional strategies is the fact that the resulting paths
contain lots of sharp corners, i.e., abrupt changes of
the direction. The higher the speed or the moment of
inertia of the moving object represented by the disk
is, the more these directional discontinuities become a
problem. E.g., for a high speed machining (HSM) ap-
plication, an abrupt change of direction requires the
tool to slow down to near-zero speed, change its direc-
tion and then accelerate until the desired maximum
speed is reached again.
In order to avoid sharp directional discontinuities,

(spiral) paths have been studied. Bieterman and
Sandstrom [2] present an approach based on partial
differential equations (PDEs) to compute spiral tool
paths inside star-shaped pockets. Abrahamsen [1]
constructs a polygonal spiral inside a pocket bounded
by straight-line segments. Held and Spielberger [4, 5]
used the medial axis of the pocket to generate spiral
paths for general non-convex pockets with or without
islands. The key ingredient of their approach are cir-
cles centered on the medial axis whose radii increase
as time progresses. Portions of these circles are inter-
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polated and connected by other circular arcs to form
a G1-continuous path.

Since the algorithm by Held and Spielberger [4, 5]
is difficult to analyze theoretically and even more dif-
ficult to implement reliably, in this work we pick up
their overall idea but simplify it significantly: A lin-
earization of the medial axis allows to come up with
an algorithm for a raw G0-continuous spiral path that
is easy to implement. (And, indeed, an implementa-
tion of this algorithm is already in commercial use at
our industrial partner.) The spiral path is continuous,
without self-intersection, and respects a user-specified
maximum step-over distance. This raw path can then
be boosted to G1-continuity or C2-continuity by us-
ing a (one-sided) approximation by biarcs or cubic
B-splines.

As in the work by Held and Spielberger [4, 5], our
spiral path starts in the interior of the pocket and
ends at its boundary. The simplicity of our approach
allows to generalize this scheme and to devise double-
spiral paths that start and end at arbitrary points on
the boundary. This makes it easier to cover a complex
shape by one continuous spiral path by (1) decompos-
ing the shape into simpler sub-areas, (2) computing a
(double) spiral within every sub-area, and (3) linking
the individual spirals to form one continuous path.
While such a double-spiral path is unsuited for ma-
chining, it may find use in other applications, such
as spray painting, aerial surveillance, or path finding
algorithms for rescue missions.

2 Preliminaries

If a disk of radius ρ that moves has to stay within a
shape during the entire movement then it is obvious
that its center can never get closer to the boundary
then ρ, even if this constraint results in some areas of
the shape being uncovered. (E.g., at convex corners
of the boundary.) The loci of all permissible positions
of the center can be obtained as the Minkowski dif-
ference of the shape and a disk of radius ρ centered
at the origin. We call this set a pocket, P . Hence,
the area P ′ to be covered by our moving disk is given
by the Minkowski union of P with a disk of radius
ρ centered at the origin. It is well-known that (1)
the boundary of P also consists of O(n) straight-line
segments and circular arcs if the initial shape was
bounded by n straight-line segments and circular arcs,
and (2) that it can be obtained in O(n log n) time via
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Voronoi-based offsetting.

We assume that P is path-connected and simply-
connected. If P were disconnected then we would
run our algorithm separately for every connected
component. If P contains islands (i.e., is multiply-
connected) then we convert it to a simply-connected
area by introducing bridges [5].

It is natural to break a spiral that winds around
a point r for k times into a sequence of k individual
portions, where each portion corresponds to one full
turn around r. We call such a portion of a spiral
a lap. Then the step-over distance at point p of lap
ℓi+1 is the minimum distance from p to the next inner
lap ℓi. It is obvious that, in general, the step-over
distance has to be less than the diameter of the disk
that is being moved in order to avoid regions of P ′

that are not covered. In practice, considerably smaller
step-over distances are used, though. For HSM, a
good step-over value is a fraction of the diameter that
depends on the material of the cutter as well as the
workpiece. (It is largely independent of the geometry
of the pocket.) E.g., for aluminum or (non-hardened)
steel a typical maximum step-over is given by about
15% of the diameter. In any case, it is important that
the user can specify a maximum step-over ∆ that the
spiral path has to keep.

3 The Medial Axis Tree

In order to simplify the algorithm by Held and Spiel-
berger [4] we approximate every edge of the medial
axis MA(P ) of the pocket P by a polygonal chain.
The vertices of such a polygonal chain are obtained
by placing uniformly distributed sample points on the
edge such that the maximum length of a segment of
the chain is less than a user-supplied or heuristically
determined value λ. This process yields the discrete
medial axis MA′(P ). We refer to the sample points
on MA(P ) and the original nodes of MA(P ) as ver-
tices of MA′(P ).

As usual, the clearance, clr(p), of a point p on
MA′(P ) is the radius of the largest disk centered at
p that fits into P . For every vertex p of MA′(P ) we
consider the points p1, p2, . . . , pk where the clearance
disk of p touches the boundary ∂P of P , and con-
struct the clearance line segments pp1, pp2, . . . , ppk.
(If p happens to be the center of a circular arc a of
∂P then we select finitely many points on a which are
uniformly spaced, with a spacing less than λ.)

Let L be the set of all clearance line segments de-
fined by vertices of MA′(P ). We add L to MA′(P )
and get MA′′(P ) := MA′(P ) ∪ L.

Both MA′(P ) and MA′′(P ) form a tree because P
does not contain islands. By choosing one vertex r as
root we can turn MA′′(P ) into a rooted tree Tr(P ),
the discrete medial axis tree derived from MA′′(P ).

Since all edges of Tr(P ) correspond to line seg-
ments, it is easy to compute the (Euclidean) length
dTr(P )(p, q) of the path between two vertices p, q of
Tr(P ). This allows to define the Euclidean height of
a vertex p of Tr(P ) as

hTr(P )(p) := max
q

(

dTr(P )(p, q) + clr(q)
)

,

where the maximum is taken over all vertices q of the
sub-tree of Tr(P ) rooted at p. As in [5] we assume
that Tr(P ) is height-balanced, that is, that hTr(P )(r)
is assumed for two different leaves of Tr(P ). (If no
such vertex exists then we insert a new vertex within
an edge of Tr(P ) in order to achieve a perfect bal-
ance.) See Figure 1. (For the sake of visual clarity we
show this toy example with a very course discretiza-
tion and an unrealistically large step-over distance,
which result in spiral paths that do not look smooth.)

(a)

r

(b)

Figure 1: (a) Medial axis. (b) Height-balanced dis-
crete medial axis tree Tr(P ).

4 Impulse Propagation

As in [4] we consider an impulse which starts at the
root r of the discrete medial axis tree Tr(P ), which is
active during the time interval [0, 1], and which dis-
charges concurrently at the leaves of Tr(P ). Let e be
an edge between the nodes p and q of Tr(P ), where p
is the parent node of q inside Tr(P ). The velocity ve
of the impulse at e is given by

ve :=
hTr(P )(q) + le

1− tp
,

where le is the length of e and tp is the time when
the impulse reached p. Since the impulse starts at
time tr = 0 at r, we can recursively compute the
time when the impulse reaches a specific vertex or
any point within an edge of Tr(P ).
As the impulse flows through Tr(P ), it covers an

increasing portion of Tr(P ). The point which the im-
pulse reaches at time t on its way from r to some leaf
of Tr(P ) is called corner at time t. Clearly, there exist
at most as many corners as there are leaves in Tr(P ).

By computing all corners at a specific moment in
time, and arranging them in the order in which they
appear when Tr(P ) is traversed in depth-first manner,
it is feasible to construct a closed polygonal chain, a
so-called wavefront w(t) at time t.
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r

Figure 2: Wavefronts.

In order to guar-
antee that the user-
specified maximum
step-over ∆ is re-
spected, the spacing
of the wavefronts has
to be chosen carefully.
Roughly, we divide
the Euclidean height
hTr(P )(r) of r by ∆ in order to get a lower bound
on the number m + 1 of wavefronts. (In Figure 2,
the two longest paths in Tr(P ) between r and leaves
of Tr(P ) that correspond to hTr(P )(r) are shown
in orange.) This gives us a uniform decomposition
of time T := (t0, t1, ..., tm), for m ∈ N0, with
0 = t0 < t1 < ... < tm = 1. Then the corners of
the wavefront w(ti) are given by the positions of the
impulse at time ti. (We omit formulas due to lack
of space.) Note that this construction implies that
the longest paths are split by the wavefronts into
sections with length at most ∆. In particular, our
construction ensures that the (symmetric) Hausdorff
distance between w(ti) and w(ti+1) is at most ∆ and,
thus, that the maximum step-over ∆ is respected.
Note that w(tm) equals ∂P while w(t0) degenerates
to r.

5 One Spiral Path

We now focus on the generation of the actual spiral
path, which is fundamentally different to the strategy
applied by Held and Spielberger [4]. The spiral path
S(P,∆) is made up of m laps L1, L2, . . . , Lm. Each
of these laps is a polygonal chain whose corners lie on
Tr(P ). (In addition, one final (trivial) lap is needed
for moving the disk along ∂P .) In a nutshell, we com-
pute the innermost lap L1 by interpolating between
the wavefronts w(t0), i.e., the root r of Tr(P ), and
w(t1). Similarly, Lm constitutes an interpolation be-
tween w(tm−1) and w(tm), i.e., ∂P . All other laps
are formed by interpolations between L1 and Lm, see
Figure 3. Every lap starts and ends at one specific
clearance line incident at r. The important technical
issue is to generate these laps in such a way that the
step-over distance between neighboring laps does not
exceed the user-specified maximum step-over ∆.

(a) (b)

Figure 3: (a) First and last lap. (b) All laps.

We start with explaining how L1 is generated, see
Figure 4. Recall that w(t0) degenerates to r. Sup-
pose that q0 is the vertex of w(t1) that is intersected
by the clearance line rv0, on which all laps start and
end. Thus, L1 starts at r and ends at q0. If we want
to generate counter-clockwise (CCW) laps then we
number the vertices of w(t1) in CCW order, starting
at q0. Now consider some vertex of w(t1), e.g., q4
in Figure 4. Let d4 denote the length of the polyg-
onal chain q0q1 . . . q4, let d denote the circumference
of w(t1), and let δ4 denote the distance (along Tr(P ))
from q4 to r. Then a candidate corner c of L1 is placed
on the path from q4 to r at a distance (along Tr(P ))
of

(

1−
d

d4

)

· δ4

from q4. We store c at the corresponding edge of
Tr(P ). Note that some vertices of w(t1) might end up
storing candidate corners on the same edge or path
towards r.

r

q0

q1

q2
q3q4

q5
q6
q7
q8

q9 q10
q11

c

Figure 4: Lap
generation.

After setting the weight d to
the circumference of ∂P and let-
ting the corners of w(tm−1) play
the role of r, we obtain candi-
date corners for Lm in a similar
way by moving from the vertices
of w(tm), i.e., ∂P , towards the
vertices of w(tm−1). If required,
we can also let Lm wind around
r a bit more than once, and let it
end at some point on ∂P other
than v0, by making d larger than the circumference of
∂P .
In order to actually generate L1 we scan Tr(P ) in

a depth-first order, starting at r and moving along
rv0 as first branch of Tr(P ). The recursive scan stops
whenever a candidate corner for L1 is encountered.
This depth-first scan establishes all corners of L1 in
the desired (CCW or CW) order. Then we we start
a new depth-first scan towards the leaves of Tr(P ) at
every corner q of L1. The recursion of the depth-first
scan from q is stopped whenever we get to a distance
(m−2)∆ from q along Tr(P ). At every such stopping
point of the recursion a new candidate corner for Lm

is placed. Then another depth-first scan starting at
r reveals all corners of Lm by stopping the recursion
whenever a candidate corner for Lm is encountered.
We note that this construction guarantees the fol-

lowing distances, where H(·, ·) denotes the symmetric
Hausdorff distance: H(r, L1) ≤ ∆ and H(∂P,Lm) ≤
∆ and H(L1, Lm) ≤ (m− 2) ·∆.
The remaining laps L2, . . . , Lm−1 can be produced

similar to the generation of the initial wavefronts if we
take the freedom to regard one lap as a special type
of wavefront between L1 and Lm: Again we let an
impulse propagate along Tr(P ). However, this mod-
ified impulse propagation starts at time t = 0 at the
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corners of L1, and ends at time t = 1 at the corners
of Lm. Then, for properly chosen velocities of the
impulse on the edges of Tr(P ), the “wavefront” that
corresponds to the time i/m−2 forms the lap Li+1, for
i ∈ {1, 2, . . . ,m− 2}.
By connecting all laps in the natural way we obtain

a polygonal path S(P,∆) inside P . Trivially, S(P,∆)
starts at r and ends on ∂P . Furthermore, S(P,∆) is
not self-intersecting, because we are gradually moving
outwards, starting at r, until we arrive at ∂P . And
due to the construction, S(P,∆) respects the maxi-
mum step-over ∆.

6 Generating a Double Spiral

We now generalize our approach to a double spiral
that starts and ends at the boundary ∂P . As in the
case of a single spiral, the user-specified step-over ∆

implies a certain minimum number of wavefronts. For
the sake of descriptional simplicity, suppose that this
number is odd and that we have 2k + 1 wavefronts
w(t0), w(t1), . . . , w(t2k), with w(t0) equal to r and
w(t2k) equal to ∂P . We use the algorithm of Sec-
tion 5 to compute one single spiral with maximum
step-over 2∆ which starts at r and ends at v0 on
∂P . Let L1, L3, . . . , L2k−1 denote the successive laps
of this spiral. Hence, L1 starts at r and ends at the
intersection q of w(t2) with rv0, L3 starts at q and
ends on w(t4), and so on. In particular, L2k−1 ends
at v0 on ∂P .
Let L2k+1 be identical to ∂P . At every corner of

lap Li, for i ∈ {1, 3, . . . , 2k − 1} we plant an impulse
that moves towards the leaves of Tr(P ), starting on
Li at time t = 0 and reaching Li+2 at time t = 1.
Stopping the impulse at time t = 1/2 yields the laps
L2, L4, . . . , L2k, where L2 starts at q and L2k ends at
v0 on ∂P . As for a single spiral, the positions of the
end-points of L2k−1 and L2k on ∂P can be adjusted to
meet specific needs. In Figure 5(a), the two sequences
of laps are shown in red and blue.

(a) (b)

Figure 5: (a) Double spiral, and (b) its approximation
by cubic Bézier curves.

In order to connect the start of L2 at q with the
start of L1 at r we move from the corners of L1 to-
wards r for a distance of ∆, thus obtaining corners of
a polygonal path that connects L1 and L2. In Fig-
ure 5(a), this path is shown in orange. This construc-

tion ensures that the resulting double spiral is not
self-intersecting and respects the maximum step-over
∆.

7 Extensions

Figure 6: Shape covered
by one multi-spiral path.

As explained in [5],
we can decompose
a complex (possibly
multiply-connected)
shape into simpler
sub-shapes and then
compute spiral paths
within these sub-
shapes: Two single
spirals and several
double spirals can be
linked to form one
continuous multi-spiral path that spirals through the
entire shape, see Figure 6. We omit details due to
lack of space.

Furthermore, the polygonal spirals can be approxi-
mated by higher-order primitives. For instance, Fig-
ure 5(b) shows an approximation by cubic Bézier
curves of the double spiral of Figure 5(a). (For the
approximation we use the PowerApx package [3].)

References

[1] M. Abrahamsen. Spiral Toolpaths for High-Speed
Machining of 2D Pockets With or Without Is-
lands. In Proc. ASME IDETC/CIE 2015 Conf.,
2015.

[2] M.B. Bieterman and D.R. Sandstrom. A Curvi-
linear Tool-Path Method for Pocket Machining.
ASME J. Manufac. Science Eng., 125(4):709–715,
November 2003.

[3] M. Heimlich and M. Held. Biarc Approximation,
Simplification and Smoothing of Polygonal Curves
by Means of Voronoi-Based Tolerance Bands. In-
ternat. J. Comput. Geom. Appl., 18(3):221–250,
June 2008.

[4] M. Held and C. Spielberger. A Smooth Spiral Tool
Path for High Speed Machining of 2D Pockets.
Comput. Aided Design, 41(7):539–550, July 2009.

[5] M. Held and C. Spielberger. Improved Spi-
ral High-Speed Machining of Multiply-Connected
Pockets. Comput. Aided Design & Appl.,
11(3):346–357, 2014.


