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We simplify and extend prior work by Held and Spielberger [CAD 2009, CAD&A 2014] to obtain spiral-like
paths inside of planar shapes bounded by straight-line segments and circular arcs: We use a linearization
to derive a simple algorithm that computes a continuous spiral-like path which (1) consists of straight-
line segments, (2) has no self-intersections, (3) respects a user-specified maximum step-over distance,
and (4) starts in the interior and ends at the boundary of the shape. Then we extend this basic algorithm
to double-spiral paths that start and end at the boundary, and show how these double spirals can be used
to cover complicated planar shapes by composite spiral paths. We also discuss how to improve the
smoothness and reduce the curvature variation of our paths, and how to boost them to higher levels
of continuity.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction tion and then accelerate until the desired maximum speed is
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1.1. Motivation

Several applications require to cover a planar shape bymoving a
circular disk along a path. E.g., in machining applications the disk
models the cross-section of a tool and the area models a so-
called pocket. Similarly, the disk may represent the area covered
by a spray nozzle or the area of visibility of a camera device used
for aerial surveillance. In our study the planar shape may be
bounded by one outer contour and possibly a number of island
contours (contained within the outer contour), where each contour
is formed by straight-line segments and circular arcs.

Traditional strategies for path generation include zigzag pat-
terns and the use of offset curves to form contour-parallel patterns.
See, e.g., Held (1991) for a detailed discussion of both strategies in
the context of pocket machining.

Common to these traditional strategies is the fact that the
resulting paths contain lots of sharp corners, i.e., abrupt changes
of the direction. The higher the speed or the moment of inertia of
the moving object represented by the disk, the more these direc-
tional discontinuities cause problems. E.g., for a high speed
machining (HSM) application, an abrupt change of direction
requires the tool to slow down to near-zero speed, change its direc-
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reached again. In a machining application, sharp corners also lead
to a high variation of the tool load.

1.2. Prior work

One way of generating a smooth continuous path is to rely on a
traditional strategy and to reduce sharp directional discontinuities
in a post-processing step: Pateloup, Duc, and Ray (2004) and Zhao,
Wang, Zhou, and Qin (2007), Zhao, Liu, Zhang, Zhou, and Yu (2009)
take a conventional tool path and smooth it by inserting circular
fillet arcs.

Spiral-like paths are widely regarded as a suitable means for
avoiding sharp directional discontinuities. Bieterman and
Sandstrom (2002) present an approach based on partial differential
equations (PDEs) to compute a spiral-like path inside a star-shaped
pocket. Its border contour is successively offset inwards by evalu-
ating the PDE at different points in time. Then these solution con-
tours are connected through radial interpolation. Banerjee, Feng,
and Bordatchev (2012) use a similar approach and solve the eigen-
value problem for an elliptic PDE. Neighboring contours are con-
nected based on a winding-angle parameterization. In addition,
they explain how to deal with one single island near the center
of the planar shape.

Zhou, Zhao, Li, and Xia (2016) propose a strategy that produces
smooth, double spirals which start as well as end at the boundary
of the planar shape. A series of isothermal lines is derived from a
parabolic PDE. By interpolating between successive isothermal
lines a closed spiral-like path is produced. Embedding a second
spiral-like path between adjacent revolutions of the initial one
es by Elsevier.
/licenses/by-nc-nd/4.0/).
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yields the final double spiral. Multiply-connected input shapes, i.e.,
regions which contain islands, are subdivided into (nearly star-
shaped) sub-shapes. One connected path is produced by comput-
ing a double spiral inside every sub-shape, and linking neighboring
ones together at their ends.

Zhao et al. (2016) suggest space-filling curves (‘‘Fermat spirals”)
to cover planar shapes. Another strategy which is based on space-
filling curves is introduced by Romero-Carrillo, Torres-Jimenez,
Dorado, and Díaz-Garrido (2015): An Archimedean spiral is
deformed through linear morphing, and embedded into a convex
two dimensional region.

Abrahamsen (2015) constructs a polygonal spiral-like path
inside a planar shape bounded by straight-line segments. After cal-
culating an enhanced medial axis tree, a sequence of uniformly dis-
tributed wavefronts is computed. Each wavefront is given by a
sequence of vertices which are situated on the edges of the medial
axis. A closed spiral-like path is generated by manipulating the
positions of these vertices. The resulting path is then smoothed
by inserting circular arcs at sharp corners.

Held and Spielberger (2009, 2014) generate spiral-like paths for
general non-convex planar shapes with or without islands. A series
of circles are placed on the medial axis whose radii increase as time
progresses. Portions of these circles are interpolated and connected
by other circular arcs to form a G1-continuous path.

While our own work was originally motivated by an HSM appli-
cation at our industrial partner, we note that a need for paths that
cover specific areas while avoiding sharp directional discontinu-
ities arises also outside of CAD/CAM: E.g., Chandler, Rasmussen,
and Pachter (2010) insert fillet arcs into a polygonal path in order
to take care of maneuverability constraints of an unmanned aerial
vehicle. We refer to Keller (2017) for a recent detailed discussion of
smooth paths for aerial surveillance.
1 Since no efficient algorithm to compute the medial axis of a NURBS curve (or
other freeform curve) is known, any freefrom input boundary would have to be
approximated by straight-line segments and circular arcs prior to the application of
our algorithm.
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1.3. Our contribution

Since the algorithm by Held and Spielberger (2009, 2014) is dif-
ficult to analyze theoretically and even more difficult to implement
reliably, in this work we pick up their basic idea and simplify it sig-
nificantly: A linearization of the medial axis of the input shape
allows to come up with an algorithm for a polygonal spiral-like
path that is easy to implement. (And, indeed, an implementation
of this algorithm is already in commercial use at our industrial
partner.) The path is continuous, without self-intersections, and
respects a user-specified maximum ‘‘step-over” distance. This ini-
tial path is then smoothed by refining the positions of its vertices,
which helps to reduce the curvature variation. It can be boosted to
G1-continuity or C2-continuity by using an approximation by
biarcs or cubic B-splines. (We use the POWERAPX package
(Heimlich & Held, 2008; Held & Kaaser, 2014).)

As in the work by Held and Spielberger (2009, 2014), our spiral-
like paths start in the interior of the pocket and end at its bound-
ary. The simplicity of our approach allows to generalize this
scheme and to devise double-spiral paths that start and end at
arbitrary points on the boundary. This makes it easier to cover a
complex shape by one continuous spiral-like path by (1) decom-
posing the shape into simpler sub-areas, (2) computing a (double)
spiral within every sub-area, and (3) linking the individual paths to
form one continuous path. While such a double-spiral path is
unsuited for machining, it may find use in other applications, such
as layered manufacturing, spray painting, aerial surveillance, or
path finding algorithms for search&rescue missions.

Our approach relies heavily on the medial axis of the input: (1)
It serves as the key tool for capturing the geometry of the shape
and for computing offset-like curves which form the basis for our
paths. (2) It allows to determine an upper bound on the ‘‘step-
over” distance between portions of the spiral. Besides its inherent
simplicity, a major advantage of our approach is its generality: It
can deal with arbitrarily complex planar shapes with and without
islands, thereby guaranteeing a maximum ‘‘step-over” distance.

2. Preliminaries

Consider a planar input shape that is bounded by straight-line
segments and circular arcs, and suppose that we want to move a
disk of radius q inside this shape such that the area swept by the
disk equals (most of) the shape. If the disk has to stay within the
shape during the entire movement then it is obvious that its center
can never get closer to the boundary of the shape than q, even if
this constraint results in some areas of the shape being uncovered.
(E.g., for a polygonal shape this will happen at convex vertices of
the shape.) The loci of all permissible positions of the center of
the disk can be obtained as the Minkowski difference of the shape
and a disk of radius q centered at the origin. (The Minkowski dif-
ference A� B of two sets A;B of position vectors in the Euclidean
plane R2 is defined as A� B :¼ fc 2 R2 : c þ B#Ag.).

We call this set of permissible center positions a pocket, P. (But,
again, our work is not necessarily restricted to traditional pocket
machining applications.) It is well-known that (1) the boundary
@P of P consists of OðnÞ straight-line segments and circular arcs if
the initial shape was bounded by n straight-line segments and cir-
cular arcs, and that (2) it can be obtained in Oðn lognÞ time via
Voronoi-based offsetting (Held, 1991). We use the VRONI/ARCV-
RONI (Held, 2001; Held & Huber, 2009) package to compute Voro-
noi diagrams, medial axes1 and offsets.

Of course, in order to cover as much of P as possible, the disk
will have to be moved along the boundary @P of P once during a fin-
ishing pass. In an actual machining application one may want to
consider a Minkowski difference of the input shape and a disk of
radius qþ e, for some e > 0, thus pushing @P further inwards. This
will help to avoid that the tool gets very close to the boundary of
the input shape while traveling along our spiral-like path and
leaves only a thin amount of material along the boundary for the
finishing pass.

We assume that P is path-connected and simply-connected. If P
were disconnected then we would run our algorithm separately for
every connected component of P. If P contains islands—i.e., is
multiply-connected—then we follow (Held & Spielberger, 2014)
and convert it to a simply-connected area by introducing bridges,
see Fig. 1. (Needless to say, this is a rather complicated pocket that
is difficult to cover decently by only one spiral-like path.) Every
bridge corresponds to two straight-line segments which have
opposing orientations and which are added to the boundary of P
in an appropriate way such that one single boundary contour is
obtained. Human guidance in the selection of ‘‘good” bridges (rel-
ative to the intended application) is possible but, of course, the
algorithm explained in Held and Spielberger (2014) can compute
all bridges automatically without human interaction.

It is natural to break a spiral that winds around a point r for k
times into a sequence of k individual portions, where each portion
corresponds to one full turn around r. We call such a portion of a
spiral a lap. Then the step-over distance at point p of lap Liþ1 is
the minimum distance from p to the next inner lap Li, cf. Fig. 2. It
is obvious that, in general, the step-over distance has to be less
than the diameter of the disk which is being moved in order to
avoid regions of P that are not covered. In practice, considerably
smaller step-over distances are used, though. For HSM a good



Fig. 1. A cubic B-spline as a spiral-like path inside a multiply-connected planar
shape which was converted to a simply-connected shape by means of bridges
(shown in blue).

Fig. 2. The local step-over distance at a point p on lap Liþ1 of a spiral is the
minimum distance from p to the next inner lap Li .
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step-over value is a rather small fraction of the diameter that
depends on the material of the cutter as well as on the workpiece.
(It is largely independent of the geometry of the pocket.) E.g., for
aluminum or (non-hardened) steel a typical maximum step-over
is given by about 15% of the diameter. In any case, it is important
that the user can control the maximum step-over D of a spiral path.

We note that in mathematics the term ‘‘spiral” has come to
mean a curve that emanates from a center point c and winds
around c at a monotonically increasing curvature and distance.
Hence, every lap of a spiral lies between an inner circle and an
outer circle centered at c: Every lap starts at its inner circle and
reaches its outer circle after winding around c once. Thereby the
fraction do

di
of the distance do to the outer circle over the distance

di to the inner circle decreases monotonically.
In the sequel we investigate ‘‘spiral-like” paths that can be seen

as a generalization of standard spirals. Our paths also start at a cen-
ter point, r, and wind around it. And every lap of such a spiral-like
path starts at an inner boundary curve and reaches its outer
boundary curve after winding around r once, thereby also decreas-
ing the fraction do

di
monotonically. However, for our spiral-like paths

we allow general nested Jordan curves2 in lieu of the concentric cir-
cles as boundary curves. Hence, the distances to r and to the inner
boundary curve as well as the curvature may also decrease along a
lap of such a path. Still, for the sake of terminological simplicity,
we prefer to apply the term ‘‘spiral” also to our spiral-like paths in
the rest of this paper.
2 A Jordan curve is a closed curve that is simple, i.e., which has no self-intersections.
3. The medial axis tree

According to standard definition the medial axis MAðPÞ of the
pocket P is the locus of all points inside P which have more than
one closest point on the boundary of P, cf. Fig. 3(a). It is known
to be a subset of the Voronoi diagram of P, and consist of
straight-line segments and portions of conics as edges.

In order to simplify the algorithm by Held and Spielberger
(2009) we approximate every edge of the medial axis MAðPÞ by
a polygonal chain. The vertices of such a polygonal chain are
obtained by placing uniformly distributed sample points on the
edge such that the maximum length of a segment of the chain is
less than a user-supplied or heuristically determined value k. This
process yields the discrete medial axis MA0ðPÞ. We refer to the
sample points on MAðPÞ and the original nodes of MAðPÞ as nodes
of MA0ðPÞ.

As usual, the clearance, clrðpÞ, of a point p on MA0ðPÞ is the
radius of the largest disk (‘‘clearance disk”) centered at p that fits
into P. For every node p of MA0ðPÞ we consider the points
p1; p2; . . . ; pk where the clearance disk of p touches the boundary
@P of P, and construct the clearance line segments
pp1; pp2; . . . ; ppk. If p happens to be the center of a circular arc a
of @P then we select finitely many points on a which are uniformly
spaced, with a spacing less than k. Note that some clearance lines
might share the same reflex vertex of the boundary @P of P as start
point.

We add the set of all clearance line segments toMA0ðPÞ and get
the new (planar straight-line graph) MA00ðPÞ. The medial axis
MAðPÞ is known to form a tree because P does not contain islands.
This property carries over to MA00ðPÞ if we regard the start points
of two different clearance lines as different nodes even if they coin-
cide at the same reflex vertex of the boundary of P. Hence, by
choosing one (inner) node r of MA00ðPÞ as root we can turn
MA00ðPÞ into a rooted tree T r , the discrete medial axis tree derived
from MA00ðPÞ. (Since we will use this symbol for the discrete med-
ial axis tree of P at various places and also within mathematical
equations we keep the notation simple and do not make the
dependence of T r on P explicit in the notation.) All points that cor-
respond to the leaves of T r lie on @P. In particular, every start point
of a clearance line on @P forms a leaf node of T r .

Since all edges of T r are given by line segments, it is easy to
compute the (Euclidean) length dT r ðp; qÞ of the unique path along
T r between two nodes p; q of T r . This allows us to define the Eucli-
dean height of a node p of T r as

hT r ðpÞ :¼ max
q

dT r ðp; qÞ;

where the maximum is taken over all nodes q of the sub-tree(s) of
T r rooted at p.
Fig. 3. (a) Medial axis of a pocket P; (b) the height-balanced discrete medial axis
tree T r rooted at r, with the two leaves that define the Euclidean height hT r ðrÞ of r
shown in red and the corresponding two radial paths shown in orange.
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As in Held and Spielberger (2014) we assume that T r is height-
balanced: We assume that hT r ðrÞ is defined by at least two different
leaves of T r . That is, we assume that there exist k P 2 distinct leaf
nodes v1;v2; . . . ;vk of T r such that

hT r ðrÞ ¼ dT r ðr; v1Þ ¼ dT r ðr; v2Þ ¼ � � � ¼ dT r ðr; vkÞ:

Every path from r to such a leaf v i is called a radial path of T r . See
Fig. 3. (For the sake of visual clarity we show this toy example with
a very coarse discretization and (in subsequent figures) with an
unrealistically large step-over distance.) If no such node r exists in
T r then we insert a new node within an edge of T r in order to
achieve such a perfect height balance. The computation of all Eucli-
dean heights of the nodes of T r and the height-balancing can be
done easily in time linear in the number of edges of T r (Held &
Spielberger, 2014). In particular, no human interaction is needed
for choosing the root r. In the sequel we will use r as the start point
for our spiral-like paths.

Of course, the algorithms explained in the rest of our paper
remain applicable if a point other than the height-balanced root r
is chosen as start point. As a matter of principle, any point p in
the interior of the pocket P could be chosen as start point of the
spiral-like path and root r of the medial-axis tree. If p does not
lie on MA00ðPÞ then we consider the (closest) projection of p onto
the boundary @P of P, and add the elongation of this projection
between MA00ðPÞ and @P as dummy Voronoi edge (Held &
Spielberger, 2009). We note, though, that choosing a start point
other than the height-balanced root rwill result in (1) an increased
length of the final spiral-like path, (2) in an increased number of
laps, and (3) in a highly irregular spacing of the laps. See Fig. 4
for sample (polygonal) spirals computed by the algorithm pre-
sented in Section 5 for five different start points on MA00ðPÞ. Note
that the same maximum step-over distance D was used for all five
Fig. 4. Moving the start point of a spiral path away from the height-balanced root r
may have a significant impact on the length of the path and on the spacing of its
laps. The middle (larger) figure shows the path that starts at r.

3/348/5728966 by guest on 23 January 2021
paths. We refer to Held and Spielberger (2014) for a detailed dis-
cussion of the impact of a variation of the start point.

4. Impulse propagation

Similar to Held and Spielberger (2009) we consider an impulse
which is active during the time interval ½0;1�, which starts at the
root r of the discrete medial axis tree T r at time t :¼ 0, and dis-
charges concurrently at all leaves of T r at time t :¼ 1. Suppose that
we want the impulse to travel along every radial path of T r with
constant velocity. Then the impulse has to cover a distance of
hT r ðrÞ within unit time, which implies that the velocity v of the
impulse along every edge of a radial path equals hT r ðrÞ. Hence, a
node p on a radial path of T r is reached at the ‘‘start time”

t ¼ hT r ðrÞ � hT r ðpÞ
hT r ðrÞ

:

This simple observation can be used in a recursive manner to deter-
mine the time when the impulse reaches a specific node (or even
any point within an edge of T r) together with the impulse velocity
for all edges of T r . Initially, the start times for all nodes on the radial
paths of T r are known. (Recall that the start time tr of the root r was
set as tr :¼ 0.) Now imagine removing all edges of all radial paths
from T r . Peeling off these ‘‘longest branches” splits T r into a num-
ber of rooted sub-trees, where every sub-tree is rooted at a node of
a radial path. Let p be the root of the sub-tree Tp, and let us denote
its start time by tp. We choose a leave node p0 in Tp such that

dT r ðp;p0Þ ¼ max
v2Tp

fdT r ðp;vÞg;

with ties being broken arbitrarily. That is, the path from p to p0 is a
longest path in Tp (and also in T r) from p to a leaf of Tp. Let q be the
child of p on this path, and let le denote the length of the edge e
between p and q. The length dT r ðp;p0Þ of the entire path from p to
p0 is denoted by lb. Since the impulse has to reach p0 at time
t :¼ 1, the (constant) velocity of the impulse along e and all other
edges of the path from p to p0 is given by

ve ¼
lb

1� tp
¼ hT r ðqÞ þ le

1� tp
:

We conclude that the impulse reaches q at the start time

tq ¼ tp þ
le
ve

:

Similarly, due to the fact that the velocity of the impulse stays con-
stant along the whole edge e, the start time ts of a point s within
(the relative interior of) e is simply given by

ts ¼ tp þ
dT r ðp; sÞ
ve

:

As in the case of the nodes on the radial paths, the start times of all
other nodes on the path from p to p0 can be computed easily, too.
Once all these start times are known we remove from Tp all edges
of the path from p to p0, thereby splitting Tp into a number of
sub-trees. Then we apply this scheme recursively to these newly
generated sub-trees.

Note that we have ve 6 v , where v is the velocity along a radial
path of T r . Furthermore, the equality ve ¼ v holds only if the path
from r to p0 forms a radial path, too.

This recursive scheme allows us to determine all edge velocities
and start times in time linear in the number of edges of T r . It is an
easy exercise to prove that this scheme guarantees that the
impulse will reach all leaves of T r at time t :¼ 1. Effectively, this
scheme splits T r into a number of branches, with constant impulse
velocity per branch. See Fig. 5. We denote this set of branches by B.



Fig. 5. The velocities on some branches of T r .

Fig. 6. A series of uniformly spaced wavefronts inside the pocket for m :¼ 5. The
wavefront wðt0Þ equals r, and wðt5Þ coincides with the boundary of P; both are not
shown. The two radial paths in T r between r and leaves of T r are shown in orange.
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As the impulse flows through T r , it covers an increasing portion
of T r . The pointwhich the impulse reaches at time ton itsway from r
to some leaf of T r is called a vertex at time t. Clearly, for any time
t 2 ½0;1� there exist at most as many vertices as there are leaves in
T r . By computing all vertices at a specific moment in time, and
arranging them in the order in which they appear when T r is tra-
versed in depth-first manner, it is possible to construct a closed
polygonal chain, a so-called wavefront wðtÞ at time t.

The spacing of the wavefronts has to be chosen carefully in
order to guarantee that the user-specified maximum step-over D
is respected. Consider a uniform decomposition of time
ðt0; t1; . . . ; tmÞ, for some (yet unknown) m 2 N, with 0 ¼ t0 <

t1 < � � � < tm ¼ 1. The vertices of the wavefront wðtiÞ are given by
the positions of the impulse at time ti, see Fig. 6.

Let t� :¼ tiþ1 � ti denote the constant time difference between
the times of two neighboring wavefronts. Recall that the (symmet-
ric) Hausdorff distance HðX;YÞ between two closed and bounded
sets X;Y � R2 is defined as

H X;Yð Þ :¼ max max
x2X

min
y2Y

d x; yð Þ; max
y2Y

min
x2X

d x; yð Þ
� �

;

where dðx; yÞ denotes the standard Euclidean distance of two points
x; y 2 R2. Our goal is to choose t�, such that

HðwðtiÞ;wðtiþ1ÞÞ 6 D for all i 2 f0;1; . . . ;m� 1g:

We recall that the impulse velocity is bound by hT r ðrÞ for every
edge of T r . This implies that the impulse travels a distance of at
most s � hT r ðrÞ in time s along T r . Hence, we are able to establish
an upper bound on the symmetric Hausdorff distance between
wðs0Þ and wðs0 þ sÞ, with s0 2 ½0;1� s�, as follows:

Hðwðs0Þ;wðs0 þ sÞÞ 6 s � hT r ðrÞ:

This implies that the impulse travels a distance of at most D along
T r during the time s if we set

s :¼ D
hT r ðrÞ

:

Summarizing, in order to ensure HðwðtiÞ;wðtiþ1ÞÞ 6 D for all
i 2 f0;1; . . . ;m� 1g, it suffices to set m as

m :¼ 1
s

� �
:

This gives

t� :¼ 1
m

as the constant time distance between two impulse times that cor-
respond to neighboring wavefronts. Note that this construction
implies that the radial paths are split by the wavefronts into sec-
tions with length at most D.

5. Generating one spiral

We now focus on the generation of the actual spiral path, which
is fundamentally different to the strategy applied by Held and
Spielberger (2009). We explain and depict counter-clockwise
(CCW) spiral paths; the modifications needed to obtain clockwise
(CW) spirals are trivial. A spiral path SðP;DÞ is made up of m laps
L1; L2; . . . ; Lm. In addition, we have L0 :¼ frg and Lmþ1 :¼ @P as two
‘‘trivial” laps. Each of the laps is a polygonal chain whose vertices
lie on T r . In a nutshell, we compute the innermost (non-trivial)
lap L1 by interpolating between the wavefronts wðt0Þ, i.e., the root
r of T r , and wðt1Þ. Similarly, Lm is formed by an interpolation
between wðtm�1Þ and wðtmÞ, i.e., @P. See Fig. 7. All other (non-
trivial) laps are formed by interpolations between L1 and Lm. Every
lap starts and ends at one specific clearance line incident at r. The
important technical issue is to generate these laps in such a way
that the step-over distance between neighboring laps does not
exceed the user-specified maximum step-over D.

We start with explaining how L1 is generated, see Fig. 8. Recall
that wðt0Þ degenerates to r. Suppose that q0 is the vertex of wðt1Þ
that is intersected by the clearance line rv0, on which all laps start
and end. Thus, L1 starts at r and ends at q0. We number the vertices
of wðt1Þ in CCW order, starting at q0. Now consider some vertex of
wðt1Þ, e.g., q4 in Fig. 8. Let d denote the circumference of wðt1Þ, let
d4 denote the length of the polygonal chain q0q1 . . . q4, and let
d4 :¼ dT r ðr; q4Þ, i.e., the distance from r to q4 along T r . Then a can-
didate corner c of L1 is placed on the path from q4 to r at a distance
(along T r) of

1� d4

d

� �
� d4

from q4. We store c at the corresponding edge of T r . Note that some
vertices of wðt1Þ might end up storing candidate corners on the
same edge or path towards r. These candidate corners are classified
as ‘‘type-1” candidate corners.

After setting the weight d to the circumference of @P and letting
the vertices of wðtm�1Þ play the role of r, we obtain type-1 candi-
date corners for Lm in a similar way by moving from the vertices
of wðtmÞ, i.e., @P, towards vertices of wðtm�1Þ. If required, we can
also let Lm wind around r a bit more than once, and let it end at
some point on @P other than v0, by making d larger than the cir-
cumference of @P.



Fig. 7. (a) The first and the last lap are derived by interpolating neighboring
wavefronts. (b) The final spiral path that starts at r and ends on @P.

Fig. 8. The first lap starts at the root r of T r and ends at a vertex q0 of wðt1Þ on a
clearance line (shown in green), on which all laps start and end.
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In order to actually generate L1 we scan T r in a depth-first
order, starting at r and moving along rv0 as first branch of T r .
The recursive scan stops whenever a candidate corner for L1 is
encountered. This depth-first scan establishes all vertices of L1 in
the desired (CCW) order.

Now we start a new depth-first scan towards the leaves of T r at
every vertex q of L1. The recursion of the depth-first scan is stopped
whenever we get to a distance ðm� 1Þ � D from q along T r or, triv-
ially, if we reach the boundary @P. At every such stopping point of
the recursion a new ‘‘type-2” candidate corner for Lm is placed.
Then another depth-first scan starting at r reveals all vertices of
Lm by stopping the recursion whenever a candidate corner for Lm
(of either type-1 or type-2) is encountered.

Our construction implies the following two distance properties:

HðL0; L1Þ 6 D and HðL1; LmÞ 6 ðm� 1Þ � D:

We now argue that Lm is guaranteed to be contained in the annulus
defined by wðtm�1Þ and wðtmÞ: Every type-1 candidate corner for Lm
lies in this annulus since it is generated by an interpolation between
wðtm�1Þ andwðtmÞ. Every type-2 candidate corner which does not lie
on @P is at a distance of ðm� 1Þ � D along T r from a vertex of L1 and,
thus, at a distance of at least ðm� 1Þ � D from r. However, all vertices
of wðtm�1Þ are at a distance of at most ðm� 1Þ � D from r. Thus, also
every type-2 candidate corner lies within the annulus defined by
wðtm�1Þ and wðtmÞ. As a result, Lm lies also in this annulus. (More
precisely, all of Lm lies within the interior of this annulus except
for the start point and end point of Lm.) In particular, we get

HðLm; @PÞ ¼ HðLm; Lmþ1Þ 6 D

as the third distance property.
The remaining laps L2; . . . ; Lm�1 can be generated similar to the

generation of the initial wavefronts if we take the freedom to
regard one lap as a special type of wavefront between L1 and Lm:
Again we let an impulse propagate along T r . However, this modi-
fied impulse propagation starts at time t :¼ 0 at the vertices of
L1, and ends at time t :¼ 1 at the vertices of Lm. Then, for properly
chosen velocities of the impulse on the edges of T r , the ‘‘wave-
front” that corresponds to the time i=m� 2 forms the lap Liþ1, for
i 2 f1;2; . . . ;m� 2g.

By connecting all non-trivial laps L1; L2; . . . ; Lm in the natural
way we obtain a polygonal path SðP;DÞ inside P. Trivially, SðP;DÞ
starts at r and ends on @P. Furthermore, SðP;DÞ is not self-
intersecting because we move outwards in a strictly monotonic
fashion, starting at r, until we arrive at @P. And due to the construc-
tion, SðP;DÞ respects the maximum step-over D: The m� 2 laps
L2; . . . ; Lm�1 split a distance (along T r) of at most ðm� 1Þ � D into
m� 1 portions of length at most D. Hence, the Hausdorff distance
between Li and Liþ1 is at most D for all i 2 f1;2; . . . ;m� 1g.

We summarize our result as follows:

HðLi; Liþ1Þ 6 D for all i 2 f0;1; . . . ;mg;

which settles the claim that our spiral path SðP;DÞ obeys the user-
specified maximum step-over D. We note that D forms an upper
bound on the true maximal step-over distance: We do not deter-
mine the actual Hausdorff distance but only measure distance along
(possibly curved) edges of the medial axis of P. (An algorithm by Alt,
Behrends, & Blömer (1995) would allow to compute one Hausdorff
distance between polygonal curves with a total of n vertices in
Oðn lognÞ time but there is no obvious way for applying this algo-
rithm to the laps of our spiral path under generation.)

6. Improving and smoothing a spiral

6.1. Impulse modification

Recall that the impulse moves with constant velocity per
branch of B, cf. Fig. 5. In particular, it is constant within every edge
of T r . Hence, the velocity of the impulse might change rapidly at
some nodes of T r . This leads to exceedingly sharp corners along
the spiral path. We now explain how to remedy this problem by
modifying the impulse propagation.

In order to mitigate the effects of rapidly changing velocities
whenever a shorter branch starts, we part from the simple scheme
of using constant velocities and assign a linear velocity function to
every element of B. As in Section 4, the dynamic velocity of r is set
to hT r ðrÞ and its start time tr is set to 0. The branches in B are, again,
considered in the order in which they appear when T r is traversed
in depth-first manner. Let b be the branch that is currently
inspected, with p as its start node, p0 as its end (leaf) node, and lb
as its length. According to Section 4, the constant ‘‘average”
impulse velocity assigned to all edges of b is given by

vavg ¼
lb

1� tp
;

where tp denotes the start time at p. Roughly, the new idea is to
start with an initial velocity along b that (ideally) is identical to
the velocity vp with which the impulse reached p, and to decrease
this velocity linearly as one gets closer to @P. Of course, even after
this modification the impulse will have to travel a distance of lb
within time 1� tp.

We define the start velocity along b as

vstart :¼
vp if 2vavg P vp;

2vavg else:

�

Furthermore, the end velocity vend along b is defined as

vend :¼
2vavg � vp if 2vavg P vp;

0 else:

�

The corresponding linear velocity function #b for the velocity along
b is given by

#bðsÞ :¼ vstart � ðvstart � vendÞ s;



Fig. 10. (a) Spiral path after some vertices were shifted outwards; (b) approxima-
tion of this path by a cubic B-spline.
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with s 2 ½0;1�. Obviously, the velocity along b at a specific time t,
with tp < t 6 1, is given by

#b t � tp
1� tp

� �
:

Finally, at time t the impulse has travelled a distance of

vstart þ vq

2
ðt � tpÞ

along b. We note that the distance travelled by the impulse equals lb
for t :¼ 1, for both cases in the settings of vstart and vend.

We can now use this modified linear impulse velocity and apply
the schemes discussed in Sections 4 and 5 to compute the wave-
fronts as well as the spiral path, see Fig. 9. We note that the mod-
ified impulse travels with the (standard) constant velocity
v ¼ hT r ðrÞ along all radial paths of T r . Along all other branches
the velocity varies but never exceeds v. This fact implies that the
distance analysis of Section 5 is still applicable and that the maxi-
mum step-over D is respected everywhere along the final spiral
path even for the modified impulse setting.

In order to reduce directional discontinuities even further we
keep in mind that a vertex v of lap Li of the spiral path could be
moved along T r towards @P as long as this movement does not
(1) result in a violation of the maximum step-over D or (2) cause
v to run over Liþ1. One could even require that v keeps a certain
minimum distance from Liþ1 in order to avoid that laps get extre-
mely close to each other. In any case, every vertex v has a range
of positions which are permissible for an outwards shift of v. (This
range can also be empty for some particular vertex.)

Let ðv1;v2;v3Þ be a triple of consecutive vertices of the spiral.
We say that the angle at v2 is convex if v2 lies to the left of the
ray from v1 to v3, reflex if it lies to the right of this ray, and tangen-
tial otherwise. We compute the deviation of the angle at v2 from
180�, and insert its absolute value into a priority queue PQ. We also
keep a link from v2 into the position of this value in PQ, and from it
back to v2. This is done for all vertices of the spiral path. The prior-
ity queue PQ is organized such that it maintains the maximum
angular deviation at its top.

Once PQ has been filled we are ready to shift some vertices. Let
v2 be the vertex that is linked to the angular deviation currently
fetched from PQ. If the angle at v2 is convex then we shift v2 out-
wards. If it is reflex then we shift its predecessor v1 and its succes-
sor v3 outwards. Of course, the shifting of one or two vertices of the
triple ðv1; v2;v3Þ shall not result in deviations of the angle(s) from
180� at the unshifted vertices which are greater than the one which
we try to reduce at v2. In theory, the optimum amount(s) for shift-
ing could be determined by solving a (non-linear) optimization
problem. We resort to a much simpler approach and sample 10
uniformly distributed positions within the maximum permissible
range of new positions. (The sample number 10 turned out to be
Fig. 9. (a) Spiral path according to piecewise constant velocities of the impulse, cf.
Section 5. (b) Spiral path according to the modified linear velocities of the impulse.
good enough for our purposes; there is no theoretical justification
for it.) If the optimal shift determined this way does indeed reduce
the maximum absolute deviation of the angles at v1;v2 and v3

from 180� then we delete the three entries for v1;v2;v3 from PQ
and insert the three absolute values of the new deviations from
180� at v1;v2 and v3 into PQ. Otherwise, the entry for v2 is deleted
from PQ but no shift is carried out. See Fig. 10(a) for a result of this
shifting strategy applied to the setting of Fig. 9(b). Additional sam-
ple paths are shown in Fig. 11; the polygonal path derived from a
constant impulse propagation for the sample pocket of Fig. 11(b) is
shown in Fig. 4.

A minor technical problem is given by the fact that shifting a
vertex towards @P might cause it to run over a node of T r . In such
a case we have to split the vertex into several individual copies that
move independently towards @P.

6.2. Higher-order smoothing

For now we have obtained a spiral path which is described by a
polygonal chain. Practical experiments made it apparent quickly
Fig. 11. Sample polygonal spiral paths generated based on the modified impulse
propagation.
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that there is nothing to gain by employing non-linear functions for
the impulse velocity: The higher the algebraic degree of the veloc-
ity function, the more ‘‘tricky” freedom for choosing ‘‘good” param-
eters and the more work to implement such a function.

Experiments made it also apparent that resorting to a very fine
sampling of the medial axis and, thus, to a large amount of clear-
ance lines does not help to make the spirals look smoother. Rather,
the finer the sampling, the more the resulting spirals seemed to
‘‘converge” to some limit curve. This can be understood if one ana-
lyzes the mathematics of the impulse propagation in the neighbor-
hood of a sharp corner of a spiral: For parallel clearance lines the
propagation of the impulse obeys the intercept theorem and, thus,
the wavefront locally follows a straight-line segment even if the
sampling rate is increased significantly.

As a rule of thumb, using up to five times as many clearance
lines as we used in our sample Fig. 10 seems to yield decent results.
The sampling can be coarser along straight-line edges of the medial
axis of P and should be finer along conic edges.

In any case, a purely polygonal pathwill always show directional
discontinuities at its corners, no matter how much effort were
invested in an improved impulse propagation. Hence, it seems nat-
ural to resort to an approximation of our polygonal spirals by
higher-order primitives if the smoothness of the path is of a concern.

Of course, an approximation of a spiral path should still haveD as
maximum step-over distance, and it must not leave the pocket P.
These two requirements place constraints on an approximation.
Suppose that our spiral path SðP;D1Þ has a maximum step-over dis-
tance of D1. If we can guarantee HðSðP;D1Þ;AÞ 6 D2 for its approxi-
mation A then we know that A has a maximum step-over distance
of D1 þ D2. Hence, we can proceed as follows: (1) We choose an
approximation threshold e with 0 < e < D, (2) we compute
SP :¼ SðP;D� eÞ, and (3) we compute an approximation A of SP
such that HðSP;AÞ 6 e. This approach ensures that the maximum
step-over distanceD is not exceeded byA. In order to guarantee that
A does not leave P it suffices to ensure that the approximation of the
last lap stays locally on the left side of that lap. All other laps can be
approximated using a symmetric tolerance.

For this work we used the POWERAPX-package (Heimlich & Held,
2008; Held & Kaaser, 2014). Amongst other things, it supports the
approximation of polygonal chains by biarcs and cubic B-splines,
thus achieving G1 continuity or even C2 continuity. The approxima-
tion curve A is guaranteed to lie within a user-specified tolerance
of the original input SP, and SP is guaranteed to lie within a user-
specified tolerance of A. Hence, a bound on the Hausdorff distance
between A and SP can be established. These tolerances can be
either symmetric, asymmetric, or even one-sided. (A one-sided tol-
erance is used for the last lap of SP.)

In Fig. 10(b) we see the approximation of the spiral path shown
in Fig. 10(a) by a cubic B-spline. For the sake of simplicity, we sub-
jected the actual spiral of Fig. 10(a) to the approximation, without
Fig. 12. Cubic B-spline approximation of the polygonal spiral path of Fig. 11(b).
reducing the maximum step-over distance D. Hence, although we
used a tiny approximation threshold e which, if plotted, would
hardly exceed the penwidth used for drawing @P, the step-over dis-
tance of the resulting cubic B-splinemight exceedD ever so slightly.
Other sample cubic B-Spline spirals are shown in Figs. 1 and 12.
7. Double and composite spirals

7.1. Double spiral

All spirals discussed so far have one fact in common: They start
at some point of the medial axis and end at the boundary @P of the
pocket P. We now generalize our approach to a double spiral that
starts and ends at the boundary @P.

As in the case of a single spiral, the user-specified step-over D
implies a certain minimum number of wavefronts. For the sake
of descriptional simplicity, suppose that this number is odd and
that we have 2kþ 1 wavefronts wðt0Þ;wðt1Þ; . . . ;wðt2kÞ, with wðt0Þ
equal to r and wðt2kÞ equal to @P. We use the algorithm of Section 5
to compute one single ‘‘inner” spiral with maximum step-over 2D
which starts at r and ends at v0 on @P. Let L1; L3; . . . ; L2k�1 denote
the successive laps of this spiral. Hence, L1 starts at r and ends at
the intersection q of wðt2Þ with rv0; L3 starts at q and ends on
wðt4Þ, and so on. In particular, L2k�1 ends at v0 on @P.

Let L2kþ1 be identical to @P. For i 2 f1;3; . . . ;2k� 1g, we plant an
impulse at every vertex of lap Li that moves along T r towards the
leaves of T r , starting on Li at time t :¼ 0 and reaching Liþ2 at time
t :¼ 1. Stopping the impulse at time t ¼ 1=2 yields the vertices of
the laps L2; L4; . . . ; L2k of the ‘‘outer” spiral, where L2 starts at q
and L2k ends at v0 on @P. As for a single spiral, the positions of
the end-points of L2k�1 and L2k on @P can be adjusted to meet speci-
fic needs. In Fig. 13(a), the outer spiral and the vertices of the inner
spiral are shown.

In order to connect the start of L2 at qwith the start of L1 at rwe
move from the vertices of L1 towards r along T r for a distance of D,
thus obtaining candidate corners of a polygonal path that connects
L1 and L2. (This is similar to the generation of L1 in Section 5.) We
note that this construction ensures that the resulting double spiral
is not self-intersecting and respects the maximum step-over D. In
Fig. 13(b), a full double spiral is shown for our sample pocket.

Of course, the smoothing operations of Section 6.1 are applica-
ble again. Fig. 14 shows the outer polygonal spiral computed
according to the modified impulse propagation and smoothing,
and Fig. 14 shows an approximation of the full double spiral by a
cubic B-spline. The outer spiral was stopped in the upper-left cor-
ner of @P. (Again, we used the POWERAPX package (Heimlich & Held,
2008; Held & Kaaser, 2014) to obtain this approximation.)
Fig. 13. (a) The vertices of the outer spiral (highlighted by blue circles) are placed
halfway between the corresponding vertices of the inner spiral. (b) Final double
spiral consisting of the inner spiral (red), outer spiral (blue) and connecting
polygonal path (green).



Fig. 14. (a) Outer polygonal spiral generated based on the modified impulse
propagation. (b) Resulting double spiral as a cubic spline.

Fig. 15. (a) Subdivision into five sub-pockets and resulting graph G (in the top right
corner); (b) first and last single spiral; (c) cubic B-spline as full composite spiral
path.
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7.2. Composite spiral path

As suggested in Held and Spielberger (2014), we can decompose
a complex (possibly multiply-connected) pocket into simpler sub-
pockets and then compute spiral paths within these sub-shapes.
The obvious disadvantage of having multiple spirals is the need
to link them into one path. In general, this will require the applica-
tion to pause during these linking portions of the path, like during
retraction moves in machining.

We now employ our machinery for computing single and dou-
ble spirals to obtain composite spiral path. In a nutshell, we com-
pute suitable spirals within every sub-pocket and splice them
together appropriately.

Let D be a set of sub-pockets obtained by decomposing the
pocket P by some means. (See, e.g., Held & Spielberger, 2014 for
methods to achieve a decent decomposition.) The common bound-
ary between two sub-pockets is called a decomposition edge. We
derive a graph G from D in the following way: The nodes of G rep-
resent the sub-pockets ofD. Two nodes are linked by an edge of G if
the corresponding sub-pockets share a decomposition edge. For
the sake of descriptional simplicity we assume that G is a tree.
(Recall that we can use bridge edges to convert a multiply-
connected shape into a simply-connected shape.) A sample pocket
together with its decomposition and resulting graph G are shown
in Fig. 15(a).

We start with computing two leaf nodes v1; v2 of G which
determine the diameter of G. That is, no path in G between any pair
of nodes of G contains more edges than the path between v1 and
v2. The sub-pockets that correspond to v1 and v2 are the only ones
in which a single spiral is computed, cf. Fig. 15(b). In every other
sub-pocket we generate a double spiral. Now recall that we can
let our spirals end at arbitrary points on the pocket boundary. In
particular, we can make them start and end on the decomposition
edges. This makes it easy to link all spirals within the sub-pockets
that correspond to the diameter path between v1 and v2 into one
composite spiral path.

In a similar way, the other spirals can be linked to paths and
spliced into the composite spiral path obtained so far. We do not
go into details of the linking since the actual geometry of the link-
ing portions of the spirals depends on the geometry of the decom-
position edges. (For the sake of simplicity, in our own work we use
straight-line segments as decomposition edges.) See Fig. 15(c) for a
full composite spiral path.
Fig. 16. Two parts machined in aluminum.
8. Discussion and conclusion

We introduce a simple and easy-to-implement algorithm for
computing polygonal spirals to cover planar shapes bounded by
straight-line segments and circular arcs. The paths do not self-
intersect and respect a user-specified maximum step-over dis-
tance. Smoothing heuristics help to prevent excessively sharp cor-
ners, thus avoiding a drastic variation of the curvature. If our paths
are applied in an HSM application then smoothing will also help to
avoid a rapid change of the engagement angle. And, indeed, at least
our single spirals have already mastered a practical test at the
shop-floor level. See Fig. 16 for two pockets machined by our
industrial partner using flat-end milling.
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Currently we use POWERAPX to approximate a polygonal spiral by
biarcs or cubic B-splines. While using a package like POWERAPX is
certainly the simplest approach to boost a polygonal spiral to
higher continuity, it is not necessarily the best approach: POWERAPX

is a general-purpose tool which ‘‘blindly” approximates a polygo-
nal path such that specific tolerances are met. As discussed, this
allows to obtain smooth spirals that still respect a user’s maximum
step-over distance D. However, it cannot take advantage of the fact
that some portions of our spirals would allow a much coarser
approximation since we are still far from exceeding D. Trying to
exploit this additional information for a better approximation that
either has fewer approximation primitives or a lower variation of
the curvature seems to be a promising avenue for future research.
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