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In our previous work [1] we deal with the problem of covering a planar region R (bounded by
straight-line segments and circular arcs) by moving a circular disk along a continuous path:
The resulting spiral-like path starts in the interior of R and ends on its boundary, and is not
self-intersecting. The fundamental geometric tool for our approach is the medial axis tree
T ∗

r (R), rooted at a point r, which is formed by a combination of a discretized version of the
medial axis inside R and a set of so-called clearance lines. Imagine an impulse propagating
through T ∗

r (R) which moves from r towards the leaves of T ∗
r (R). It is possible to produce a

series of consecutive wavefronts by halting this impulse at fixed points in time. The final
spiral-like path consists of several laps, where one lap is a portion of the spiral that winds
around r exactly once. Each lap forms a polygonal chain. Initially, the first lap L1 and the
last lap Lm are computed by interpolating between successive wavefronts. The remaining,
intermediate laps are created by interpolating between L1 and Lm, see Figure 1a. In several
practical applications it is important that the minimum distance from every a point on a lap
to its next inner and outer lap is bounded by a user-specified distance ∆ ∈ R+. E.g., in a
machining application this so-called step-over distance allows to control the material removal
rate and to avoid excessive tool wear.

In the remainder of this abstract we outline ongoing work on a generalization of this
path-generation strategy to spiral-like paths over piecewise-linear terrains in three dimensions.
We will show that, once we have found a suitable substitute for the two-dimensional medial
axis tree, the concept of impulse propagation as well as the interpolation procedure can
be extended to this 3D setting. A sample spiral-like path on a simple terrain is shown in
Figures 1b and 1c.
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Figure 1 (a) A basic spiral-like path (highlighted in purple) inside a planar region R is defined by
a series of corners which are situated on the discrete medial axis tree T ∗

r (R) (highlighted in orange).
(b–c) A spiral-like path (highlighted in purple) on a triangulated terrain.

We emphasize that naïvely mapping a 2D spiral-like path onto a terrain will result
in a path that lacks any distance control between neighboring laps, for every meaningful
interpretation of “distance” on a terrain. However, devices (e.g., a metal detector) or humans
and animals (e.g., a rescue dog) that move along such a path should be expected to have a
limited range of operation. Typical distance measures that we might be interested in are
the geodesic distance or the line-of-sight distance. In the sequel we explain how to compute
a coverage path S(P, ∆) for a given triangulated terrain P and relative to a user-defined
step-over ∆ ∈ R+ such that a geodesic disk of radius ∆ covers P completely when it is moved
along S(P, ∆). The structure of choice in our generalized approach is the geodesic Voronoi
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diagram of points on a triangulated terrain. It can be defined similarly to the standard
Voronoi diagram of points in the plane by replacing the Euclidean norm with the geodesic
metric.

Let P be a triangulated terrain. We place point sites along the polygonal boundary ∂P of
P such that a roughly uniform spacing is achieved. The resulting geodesic Voronoi diagram
GVD(P ) forms a tree Tr(P ) rooted at a point r ∈ GVD(P ), where r is height-balanced (see [2]
for further details). We will refer to a path along Tr(P ) from r to a leaf of Tr(P ) as a source
branch, with source branches of maximal length being called radial paths. It is assumed that
the order of these source branches is defined by the sequence in which the corresponding
leaves appear when ∂P is traversed counter-clockwise. If p and q are two points on Tr(P ),
then the (geodesic) length `(p, q) corresponds to the length of the unique path from p to q

along Tr(P ). The geodesic height of a point p is defined by h(p) := maxq `(p, q), where the
maximum is taken over all nodes q of the sub-tree(s) of Tr(P ) rooted at p. Now imagine
an impulse propagating through Tr(P ) which starts at r at time t = 0, splits at the nodes
of Tr(P ), and discharges simultaneously at the leaves at time t = 1. The impulse reaches
a specific point p on the radial paths of Tr(P ) at the activation time tp = h(r)−h(p)

h(r) . This
observation can be used to assign an activation time to every point on Tr(P ) by recursively
“peeling off” the corresponding radial paths. Due to space considerations, we refer to [1]
for a more detailed description of this process in the 2D setting. As time progresses the
impulse covers an increasing portion of Tr(P ). Therefore, we can construct a series of m + 1
uniformly spaced wavefronts by defining a uniform decomposition of time. Each wavefront is
given by a series of vertices (in which the first and last vertex coincide) that are situated
on consecutive source branches. These wavefronts have to be chosen carefully such that
the (symmetric) Hausdorff distance H(wi, wi+1), under the geodesic metric, between two
neighboring wavefronts wi and wi+1, with i ∈ {0, 1, ..., m− 1}, is bounded by ∆.

The final spiral-like path S(P, ∆) consists of a series m laps L1, L2, ..., Lm. Each lap is
defined by a sequence of vertices which, again, lie on the source branches. Initially, two
laps are computed. The first lap L1 is generated by gradually moving its vertices from
the corresponding vertices of w0 (i.e. r) towards the vertices of w1 along the consecutive
source branches. Similarly, the last lap Lm is created by interpolating between wm−1 and
wm (i.e. ∂P ). Every vertex of L1 (or Lm) is at most ∆ away from r (or ∂P ). (Recall
that the construction of the wavefronts ensures that w1 is at most ∆ away from r and the
distance between wm−1 and ∂P is also bounded by ∆.) To construct to remaining laps
L2, L3, ..., Lm−1, a modified impulse is used. This time it starts at the vertices of L1, moves
along Tr(P ), and discharges concurrently at the vertices of Lm. The vertices of the lap Li+1
are produced by halting this modified impulse at t = i

m−2 , with i ∈ {1, 2, ..., m− 2}. These
laps L2, L3, ..., Lm−1 split the paths from the vertices of L1 towards the respective vertices
of Lm (along Tr(P )) into m− 1 portions with a length of at most ∆.

This construction ensures that the maximum geodesic distance between neighboring
wavefronts obeys the user-specified step-over ∆. We can also establish this property for
specific vertices of the spiral-like path, and are investigating how to extend our distance
considerations such that ∆ is guaranteed to be respected along the entire path. We note that
restricting our attention to a convex terrain does not seem to make the analysis any simpler.
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