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Abstract
We study multiplicatively weighted Voronoi diagrams (MWVDs) of point sites in the Euclidean
plane and present a wavefront-like approach for computing the MWVD of n points in near-
optimal O(n2 log n) time and Θ(n2) space. The key advantage of our algorithm is its simplicity.
Furthermore, it can be extended to handle additive weights at no additional computational cost.

1 Introduction

Let S denote a finite set of n distinct weighted points in R2, so-called sites. A weight function
w : S → R+ assigns a strictly positive weight w(s) to every site s ∈ S. It is common to
regard the weighted Euclidean distance dw(p, s) from an arbitrary point p in R2 to a site
s ∈ S as the standard Euclidean distance d(p, s) from p to s divided by the weight of s:

dw(p, s) := 1
w(s) · d(p, s).

For s ∈ S, the (weighted) Voronoi region VRw(s, S) of s relative to S is the set of all points
of the plane that are not farther to s than to any other site s′ in S, that is

VRw(s, S) := {p ∈ R2 : dw(p, s) ≤ dw(p, s′) for all s′ ∈ S with s 6= s′}.

The multiplicatively weighted Voronoi diagram (MWVD), VDw(S), of S is simply defined as

VDw(S) :=
⋃
s∈S

∂ VRw(s, S).

An example of a MWVD is shown in Figure 1.
A connected component of a Voronoi region is called a face. Voronoi region. For two

distinct sites s, s′ of S, the bisector b(s, s′) of s, s′ models the set of points of the plane
that are at the same weighted distance from s and s′. Hence, a non-empty intersection of
two Voronoi regions is a subset of the bisector of the two defining sites. Following common
terminology, a connected component of such a set is called a (Voronoi) edge of VDw(S). An
endpoint of an edge is called a (Voronoi) node. It is known that the bisector between two
unequally weighted sites forms a circle1. Hence, the Voronoi edges of VDw(S) are given by
straight-line segments and circular arcs. In contrast to the standard Voronoi diagram, a
MWVD may include a quadratic number of Voronoi nodes, edges, and faces [2].

In the sequel we present work in progress on computing MWVDs. Our current algorithm
operates entirely in the plane and runs in O(n2 log n) time and Θ(n2) space. It is based on a

1 Apollonius of Perga defined a circle as a set of points that have a specific distance ratio to two foci.
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Figure 1 The MWVD (shown in black) of a set of input points (in green). The numbers next to
the points indicate their weights.

wavefront-like expansion of weighted circles. As time progresses the wavefrontWF(t) covers a
growing portion of R2. Certain events mark topological changes ofWF(t) and aid us in finding
the individual Voronoi nodes. Although it is no wavefront propagation in the strict meaning
of the word, we will (for the sake of simplicity) omit the qualifier “like” from here on. Our
approach can be extended to handle both additive and multiplicative weights at no additional
cost. (Details are omitted due to lack of space.) We developed a prototype implementation
of our algorithm in C++ which uses standard IEEE 754 floating-point arithmetic.

2 Related Work

MWVDs were initially studied by Boots [3] in terms of market area analysis. In 1984,
Aurenhammer and Edelsbrunner [2] presented an optimal algorithm for constructing the
MWVD of a set of n points in R2 in O(n2) time and space. They define spheres on the bisector
circles and convert them into half-planes using a spherical inversion. We are not aware of
an implementation of their algorithm, though. Later Aurenhammer uses divide&conquer
to obtain an O(n log n) time and O(n) space algorithm for the one-dimensional weighted
Voronoi diagram [1], where all weighted input points lie on a line. Har-Peled and Raichel
[4] show that MWVDs have a slightly super-linear expected combinatorial complexity if
the weights are chosen randomly. Their result provides the motivation for working on an
algorithm whose running time is output-sensitive.

Vyatkina and Barequet [5] present a wavefront-like strategy to compute the weighted
Voronoi diagram of a set of lines in the plane in O(n2 log n) time. The Voronoi nodes are
computed based on edge and break-through events. An edge event takes place when an
active arc vanishes. A break-through event happens whenever a new wavefront arc appears.
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3 Algorithm

For the sake of descriptional simplicity we assume that no point in R2 has the same weighted
distance to more than three input sites of S. For time t ∈ R+

0 , each site s ∈ S is associated
with an expanding offset circle o(s, t) which is centered at s and whose radius equals t ·w(s).
We find it convenient to regard o(s, t) as a function of either time or distance since at time t

every point on o(s, t) is at Euclidean distance t · w(s) from s, i.e., at weighted distance t.
The wavefront WF(t) at time t is the set of all points p of the plane whose weighted

distance from S equals t: We have p ∈ WF(t) if and only if mins∈S dw(p, s) = t. The
wavefront is formed by parts of offset circles which we will refer to as wavefront arcs. Every
wavefront arc starts and ends at a moving wavefront vertex, i.e., a specific intersection point
with another offset circle. These vertices will trace out the MWVD, see Figure 2.
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Figure 2 A wavefront WF(t) (in blue) and the MWVD traced out till some time t for the setting
of Figure 1.

We now consider two sites s1, s2 ∈ S, with w(s1) < w(s2), and assume that o(s1, t) and
o(s2, t) intersect in the points i1 and i2. These two moving intersection points trace out
b(s1, s2). (Of course, the moving intersection point i1 depends on time t but we simply write
i1 instead of i1(t).) Since w(s1) < w(s2), it is easy to see that the arc of o(s1, t) which is
inside o(s2, t) will not belong to WF(t′) for any t′ > t. We refer to such an arc of an offset
circle as inactive. All other arcs in the arrangement of all offset circles are called active, see
Figure 3. Thus, it is necessary (but not sufficient) for an arc of an offset circle to be active
for all times t′ with 0 ≤ t′ < t if it is active at time t.

We now describe an event-handling scheme that allows to trace out the Voronoi diagram
by simulating the expansion of all active arcs. During the wavefront propagation process,
collision events mark the initial contact of two offset circles, domination events happen
as soon as the offset circle of a higher-weighted site fully contains the offset circle of a
lower-weighted one, and edge events as well as break-through events take place whenever an
active arc vanishes or appears. These events capture topological changes of the wavefront and
determine the corresponding Voronoi nodes of VDw(S). The latter two events are triggered
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Figure 3 The arrangement of all active arcs that corresponds to the wavefront depicted in
Figure 2.

whenever one or more active arcs vanish, i.e., shrink to zero length.
Every site s keeps track of the active arcs of its expanding offset circle o(s, t) by storing

them in a self-balancing binary search tree T (s) that is updated whenever events occur.
It maintains these arcs in sorted angular order as they appear when o(s, t) is traversed
counter-clockwise.

We start with computing the collision times for every pair of offset circles and insert them
into a priority queue Q. The initial wavefront WF(t), for t > 0 small enough, contains the
full offset circles of all sites, and every offset circle forms one active arc. Every active arc is
also marked to belong to WF(t).

As soon as the initialization phase is completed, the events are successively popped from
Q. Let e be the current event at time te. Note that the number and order of the active arcs
along a specific offset circle cannot change between two consecutive events, but their extents,
i.e., the portions of the offset circle which they occupy, may change. Hence it is important to
recompute the positions of the moving intersection points on the fly whenever we perform a
search in one of our search trees at time te.

Collision event: If e is a collision event then two offset circles o(s1, te) and o(s2, te) meet at
a single point q for the first time; see Figure 4. We search T (s1) and T (s2), and determine
the arcs a1 and a2 which contain q. If either of them is inactive then this event requires no
further processing. Otherwise we create two moving intersections i′

12 and i′′
12 at q and we

split both a1 and a2 at q. W.l.o.g., w(s1) < w(s2). As time progresses, i′
12 and i′′

12 limit a
new active arc on o(s2, t) and an inactive arc on o(s1, t). (If w(s1) = w(s2) then both new
arcs are inactive.)

Domination Event: If e is a domination event then the offset circle o(s1, te) fully contains
the offset circle o(s3, te) for the first time at time te, with w(s3) < w(s1); see Figure 5. That
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Figure 4 The collision events (depicted by black dots) of the offset circles that correspond to the
three input sites s1, s2, and s3, where w(s1) := 5, w(s2) := 6, and w(s3) := 8. The active arcs of
the offset circles are drawn in magenta whereas the inactive arcs are shown in gray. The red dots
indicate the moving intersection points i′

12 and i′′
12.

is, the two offset circles touch at a point q. Let a1 and a3 be the corresponding arcs that
contain q. If one of them is inactive then we ignore this event. Otherwise, all arcs of o(s3, te)
become inactive and a1 is merged with its neighboring arcs.

s3 s2

s1

Figure 5 A domination event that involves s1 and s3 takes place.

Edge Event: An edge event occurs at time te if at least one active arc along an offset circle
shrinks to a point q, i.e., to zero length; see Figure 6. If an entire circular-arc triangle shrinks
to q at time te then all active arcs involved can be removed from their corresponding offset
circles. Otherwise, a single active arc a1 on one of the two higher weighted offset circles
o(s1, te) just disappeared. The two other sites s2 and s3, where s3 is w.l.o.g. the site with
the lowest weight, whose offset circles cause a1 to vanish can be derived from the moving
intersection points i12 and i13 that limit a1. We remove a1 from o(s1, te) and add a new
active arc which is bound by i12 and i23 to o(s2, te). Additionally, the moving intersection
point i13 that bounds an active arcs along o(s3, te) needs to be replaced by i23.

Break-Through Event: A break-through event is a special kind of edge event and can be
treated similarly. It also occurs if an active arc a1 arc on o(s2, te) shrinks to a point q. Let,
again, s1 and s3 be the other two sites that participate in this event, where s3 is associated
with the lowest weight; see Figure 7. The arc a1 is deleted from o(s2, te) and a new active
arc a′

1 spawns between the corresponding moving intersection points i12 and i13 on o(s1, te),
and i23 that bounds a neighboring active arc along o(s3, te) is replaced by i13.

Common to all these events is the necessity to compute and store a future edge event for
every newly created active arc. Furthermore, every inactive arc is deleted from its search
data structure, while every new active arc is inserted into the search data structure of its site.
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Figure 6 In the top-most subfigure the configuration before and after the collapse of an entire
circular-arc triangle is displayed. The remaining subfigures illustrate the collapse of a single active
arc on the offset circle of the highest-weighted (medium-weighted, resp.) site.
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Figure 7 An active arc a1 disappears and a new active wavefront arc a′
1 spawns between the

moving intersection points i12 and i13 at a break-through event.
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We process events until the priority queue Q is empty. If the largest weight is associated
with a strict subset Smax of S then Q will be empty once the wavefront contains only arcs
of offset circles of sites of Smax. If all sites have identical weight then VDw(S) equals the
standard Voronoi diagram and Q will be empty once the wavefront contains only arcs of
offset circles of sites which lie on the convex hull of S.

4 Analysis

All topological changes of the wavefront are properly detected by our algorithm, as they
coincide with the collapse of at least one active arc of the wavefront. It remains to determine an
upper bound on the number of events that may take place during the wavefront propagation.

I Lemma 4.1. During the wavefront propagation Θ(n2) many collision and O(n2) many
domination events are computed.

Proof. Recall that every pair of input sites corresponds to at most one collision and at most
one domination event, with all collision events being computed a priori. J

I Lemma 4.2. During the wavefront propagation O(n2) many break-through events occur.

Proof. Let s1, s2 and s3 be the sites whose expanding offset circles o(s1, t), o(s2, t) and
o(s3, t) are involved in a break-through event at time te. These offset circles define the three
moving intersection points i12, i13 and i23, where i23 is shared by active arcs of o(s2, t) and
o(s3, t) for t < te; recall Figure 7. At the time of the event, the offset circle o(s1, te) passes
through i23 and this moving intersection point will be contained inside of o(s1, t) for all
t > te. Hence, for t > te, no active arc of o(s2, t) can share a common vertex with an active
arc of o(s3, t). (Note that otherwise the MWVD of {s1, s2, s3} would potentially include
multiply-connected Voronoi regions.) This implies that a break-through event can occur at
most once for each pair of input sites. J

I Lemma 4.3. During the wavefront propagation O(n2) many edge events occur.

Proof. At every collision and domination event a constant number of new active arcs is
generated, and every break-through event results in exactly one new active arc, resulting in
a total of O(n2) new active arcs during the entire run of the wavefront propagation. Every
edge event either reduces the number of active arcs by at least one or, if this number stays
constant, then it is coupled to exactly one of the at most quadratically many break-through
events, recall the right part of Figure 6. J

Summarizing, Θ(n2) events take place during the wavefront propagation. Each of these
events consumes up to O(log n) time, since every event requires a constant number of lookups,
insertions, and/or deletions in a self-balancing binary search tree of size O(n) or in a priority
queue of size Θ(n2). Thus, we get an overall runtime of O(n2 log n). Additionally, this
algorithm requires Θ(n2) memory because our current approach computes all quadratically
many collision events a priori. Avoiding this computational burden is work in progress.
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