
An Efficient, Practical Algorithm and Implementation for
Computing Multiplicatively Weighted Voronoi Diagrams

Martin Held1 Stefan de Lorenzo1

1University of Salzburg, Department of Computer Science

September 7, 2020

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG



Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.
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Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VDw(S) of S.
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The Standard Voronoi Diagram

• Every Voronoi edge is given by a straight-line segment or a ray.
• The Voronoi regions are convex.
• The (unweighted) Voronoi diagram has a linear combinatorial complexity in the worst case.
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Multiplicatively Weighted Voronoi Diagrams

• The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
• The Voronoi regions are (possibly) disconnected.
• The MWVD has a quadratic combinatorial complexity in the worst case.
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Multiplicatively Weighted Voronoi Diagrams

• The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
• The Voronoi regions are (possibly) disconnected.
• The MWVD has a quadratic combinatorial complexity in the worst case.
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A Wavefront-Based Strategy

• We present a wavefront-based approach for computing MWVDs.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc appears or disappears, a new Voronoi node is discovered.
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UNIVERSITÄT SALZBURG 5



Offset Circles

• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.
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Event Handling

• Collision and domination events mark the initial and last contact of two offset circles.
• Arc events happen whenever active arcs appear or disappear.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.
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Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving vertex can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.
• Therefore, the algorithm’s runtime equals O(n2 logn) in the worst case.
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Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by using an overlay arrangement.
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Candidate Sets

Candidate Set
The candidate set for a weighted nearest neighbor of q ∈ R2 consists of all sites s ∈ S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.

• Only sites within the same candidate set may collide.
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UNIVERSITÄT SALZBURG 10



Candidate Sets

Candidate Set
The candidate set for a weighted nearest neighbor of q ∈ R2 consists of all sites s ∈ S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.

• Only sites within the same candidate set may collide.

s1
s2

s3

s4

s5

s6

s7

s8
s9

s10

Computational Geometry and Applications Lab
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Overlay Arrangement

• A candidate set contains O(logn) many sites in the expected case [HPR15].
• The expected complexity of overlay arrangement is bounded by O(n logn) [KRS11].
• Thus, we may expect to compute O(n log3 n) many collisions.
• Our improved strategy computes VDw(S) in expected O(n log4 n) time.
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Implementation

• The implementation is based on the Computational Geometry Algorithms Library (CGAL).
• Our code is available on GitHub under https://github.com/cgalab/wevo.
• It can be freely used under the GNU General Public License 3.
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Experimental Evaluation: Runtime

• We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.
• All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.
• For all of these inputs, the weights were chosen uniformly at random.
• The point locations were either randomly chosen ...
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Experimental Evaluation: Runtime

• We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.
• All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.
• For all of these inputs, the weights were chosen uniformly at random.
• The point locations were either randomly chosen or derived from the Salzburg Database of

Polygonal Data [EHJ+20].
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Experimental Evaluation: Number of Events

• We tracked the number of collision ...
• The number of arc events forms an upper bound on the number of Voronoi nodes.
• Random weights seem to result in a linear combinatorial complexity of the final MWVD.
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Experimental Evaluation: Number of Events

• We tracked the number of collision and arc events that occurred during our test runs.
• The number of arc events forms an upper bound on the number of Voronoi nodes.
• Random weights seem to result in a linear combinatorial complexity of the final MWVD.
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Experimental Evaluation: Non-Random Weights

• The actual geometric distribution of the sites does not have a significant impact on the runtime.
• Our expected-case bounds only apply for inputs whose weights are chosen randomly.
• How much do our experimental results depend on the randomness of the weights?
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Experimental Evaluation: Non-Random Weights

• We sampled points uniformly within a square with side-length
√
2.

• Let d(s) be the distance of the site s ∈ S from the center of the square, and let r(s) be a number
uniformly distributed within the interval [0, 1].
• We assign α·d(s)+β·r(s)/(α+β) as weight to s, where α > 0 and β > 0 are two arbitrary but fixed

numbers for all s ∈ S.
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Extension the Straight-Line Segments

• The strategy can be easily extended to also handle weighted straight-line segments.
• Our notion of a “collision” needs to be refined.
• Thus, we distinguish between non-piercing ...
• Whenever a piercing collision event occurs, a second pair of moving vertices appears.
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• Our notion of a “collision” needs to be refined.
• Thus, we distinguish between non-piercing and piercing collision events.
• Whenever a piercing collision event occurs, a second pair of moving vertices appears.
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Additional Extensions

• Our (basic) algorithm is also able to deal with additive weights.
• Every offset circle that is associated with an additive weight gets a head-start.
• Our wavefront-based algorithm implies a simple strategy for computing one-dimensional MWVDs.
• Thus, the one-dimensional MWVD can be computed in worst-case optimal O(n logn) time and
O(n) space.
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Discussion

• We propose a fast, practical strategy to compute MWVDs.
• The expected runtime is improved by using an overlay arrangement.
• We provide a robust implementation using exact arithmetic.

Thank you for your attention!
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