An Efficient, Practical Algorithm and Implementation for
Computing Multiplicatively Weighted Voronoi Diagrams

Martin Held" Stefan de Lorenzo'

1 University of Salzburg, Department of Computer Science

September 7, 2020

UNIVERSITAT SALZBURG
Computational Geometry and Applications Lab

Problem Specification

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0

16
13
° e 22
23 1
1, %
” 14
7 []
Py []
20
[}
019

Problem Specification

Problem

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VD, (S) of S.

The Standard Voronoi Diagram

® Every Voronoi edge is given by a straight-line segment or a ray.
® The Voronoi regions are convex.
® The (unweighted) Voronoi diagram has a linear combinatorial complexity in the worst case.

Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.

Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
® The Voronoi regions are (possibly) disconnected.
®* The MWVD has a quadratic combinatorial complexity in the worst case.

A Wavefront-Based Strategy

® We present a wavefront-based approach for computing MWVDs.

® The wavefront covers an increasing portion of the plane over time.

® |t consists of wavefront arcs and wavefront vertices.

® Whenever a wavefront arc appears or disappears, a new Voronoi node is discovered.

/ /)
Azl(g? @

\

Offset Circles

® Every site is associated with an offset circle.

S1

Offset Circles

® Every site is associated with an offset circle.
® Two moving vertices trace out the bisector as time progresses.

Offset Circles

® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

D

Offset Circles

® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

Offset Circles

® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

/

Offset Circles

® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

O, ()
o () ©
O

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

) (-
c»g’c

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® All topological changes of the wavefront are properly detected.

® A quadratic number of collision events are computed in any case.

® A moving vertex can be charged with a constant number of arc events.
* In the worst case O(n?) arc events take place.

e All events can be handled in O(logn) time.

* Therefore, the algorithm’s runtime equals O (n?logn) in the worst case.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

L e

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.

Candidate Sets

Candidate Set

The candidate set for a weighted nearest neighbor of ¢ € R? consists of all sites s € S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.

SR 10

Candidate Sets

Candidate Set

The candidate set for a weighted nearest neighbor of ¢ € R? consists of all sites s € S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.

® Only sites within the same candidate set may collide.

i) 10

Overlay Arrangement

® A candidate set contains O(log n) many sites in the expected case [HPR15].

® The expected complexity of overlay arrangement is bounded by O(nlogn) [KRS11].
e Thus, we may expect to compute O(n log® n) many collisions.

® Our improved strategy computes VD, (S) in expected O(n log” n) time.

Implementation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).
® Qur code is available on GitHub under https://github.com/cgalab/wevo.
® |t can be freely used under the GNU General Public License 3.

Free as in Freedom

G 12

https://github.com/cgalab/wevo

Experimental Evaluation: Runtime

® We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.
All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.

For all of these inputs, the weights were chosen uniformly at random.

® The point locations were either randomly chosen ...

140

n
—_
[
(=}
1

Runtime/n log?
0
IS
1

60

40 T Ty Ty Ty oo
102 10% 10* 10°

Input size

Experimental Evaluation: Runtime

® We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.

All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.

® For all of these inputs, the weights were chosen uniformly at random.

® The point locations were either randomly chosen or derived from the Salzburg Database of
Polygonal Data [EHJ ™ 20].

140 140
= 120 s 120
& 2 .
= 100 = 100 .
~ ~
2 2 AR
=80 T =80 T T
= g 4 il
= = 4 oy [RS AL
A 60 60 o ji-t,},'g, 85 £
40 T Ty Ty Ty T 40 T Ty T Ty T
102 10% 10* 10° 102 103 10* 10°

Input size Input size

G 13

Experimental Evaluation: Number of Events

® We tracked the number of collision ...

#Events/nlogn

T T Ty Ty T
102 10% 10* 10°
Input size

14

Experimental Evaluation: Number of Events

® We tracked the number of collision and arc events that occurred during our test runs.
® The number of arc events forms an upper bound on the number of Voronoi nodes.
® Random weights seem to result in a linear combinatorial complexity of the final MWVD.

— —
[\ w
1 1

#Events/nlogn
#Events/n
—
—
1

Ty Ty Ty oo
102 10% 10* 10°

T T Ty Ty oo
102 10% 10* 10°
Input size

Input size

14

Experimental Evaluation: Non-Random Weights

® The actual geometric distribution of the sites does not have a significant impact on the runtime.
® QOur expected-case bounds only apply for inputs whose weights are chosen randomly.

Experimental Evaluation: Non-Random Weights

® The actual geometric distribution of the sites does not have a significant impact on the runtime.
® QOur expected-case bounds only apply for inputs whose weights are chosen randomly.
® How much do our experimental results depend on the randomness of the weights?

Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

16

Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].

16

Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].

® We assign «-d(s)+68-7(s)/(a+p) as weight to s, where « > 0 and 8 > 0 are two arbitrary but fixed
numbers for all s € S.

16

Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].

® We assign «-d(s)+68-7(s)/(a+p) as weight to s, where « > 0 and 8 > 0 are two arbitrary but fixed
numbers for all s € S.

® Non-random
® 9:1

¢ 73

v o1

A Random

= [N
[=3
(== (=)
1 1

100 A °

ot

=)
1

[}

o
o L]
Poeeatir Il L.
o LA | T —
102 103 10%
Input size

Avg. candidate set size

(=)

]

16

Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].

® We assign «-d(s)+68-7(s)/(a+p) as weight to s, where « > 0 and 8 > 0 are two arbitrary but fixed
numbers for all s € S.

10
L] ® Non-random 10 § - o® Y v
§ 200 1 o 01] ° Y
‘n ¢ 73 1 ° v
:ﬁ n v 11 109 E " ° .0. .
Q A Random E . . DS Wt
2 150 . g .] , .:"w a
= v = 10 3 - S . "u‘»
.y i ° =} E " v A
’g 100 - .® é 1 ° .: M A
s ¢ 107 4 o ° ot " Non-random
i - e T RS .
l;D . .O.. . ::'vvﬂ' o 1e ! e : I?
< 0 (B] ’i;ﬁ : A AAMAMA A Aaa 10 E ! A R’andom
T AL AL T T T T T
10° 10* 10 10 10*
Input size Input size

16

Extension the Straight-Line Segments

® The strategy can be easily extended to also handle weighted straight-line segments.
® QOur notion of a “collision” needs to be refined.
® Thus, we distinguish between non-piercing ...

Extension the Straight-Line Segments

® The strategy can be easily extended to also handle weighted straight-line segments.
® QOur notion of a “collision” needs to be refined.

® Thus, we distinguish between non-piercing and piercing collision events.

® Whenever a piercing collision event occurs, a second pair of moving vertices appears.

Extension the Straight-Line Segments

® The strategy can be easily extended to also handle weighted straight-line segments.
® QOur notion of a “collision” needs to be refined.

® Thus, we distinguish between non-piercing and piercing collision events.

® Whenever a piercing collision event occurs, a second pair of moving vertices appears.

(€

75
<2 S
@‘ @;0@96./

Additional Extensions

® Qur (basic) algorithm is also able to deal with additive weights.
® Every offset circle that is associated with an additive weight gets a head-start.

18

Additional Extensions

® Qur (basic) algorithm is also able to deal with additive weights.
® Every offset circle that is associated with an additive weight gets a head-start.
® Our wavefront-based algorithm implies a simple strategy for computing one-dimensional MWVDs.

Additional Extensions

Our (basic) algorithm is also able to deal with additive weights.

Every offset circle that is associated with an additive weight gets a head-start.
® Our wavefront-based algorithm implies a simple strategy for computing one-dimensional MWVDs.

Thus, the one-dimensional MWVD can be computed in worst-case optimal O(nlogn) time and
O(n) space.

Discussion

® We propose a fast, practical strategy to compute MWVDs.
® The expected runtime is improved by using an overlay arrangement.
® We provide a robust implementation using exact arithmetic.

B
<

)
&

S

c
.2
n
9]
]
)
5
(@]

® We propose a fast, practical strategy to compute MWVDs.

® The expected runtime is improved by using an overlay arrangement.

® We provide a robust implementation using exact arithmetic

.
”'(>
&=

—

w, rrm«i

» \
o)A
$2 8
A\ rrhaﬁ,%@
%)

\«,-

19

References |

@ Gnther Eder, Martin Held, Steinp6r Jasonarson, Philipp Mayer, and Peter Palfrader.
Salzburg Database of Polygonal Data: Polygons and Their Generators.
Data in Brief, 31:105984, August 2020.

@ Sariel Har-Peled and Benjamin Raichel.
On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams.
Discrete & Computational Geometry, 53(3):547-568, 2015.

@ Haim Kaplan, Edgar Ramos, and Micha Sharir.
The Overlay of Minimization Diagrams in a Randomized Incremental Construction.
Discrete & Computational Geometry, 45(3):371-382, 2011.

20

	Introduction
	Wavefront Propagation
	Overlay Arrangement
	Experimental Evaluation
	Extensions
	Conclusion
	References

