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Problem Specification

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0
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Problem Specification

Problem

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VD, (S) of S.




The Standard Voronoi Diagram

® Every Voronoi edge is given by a straight-line segment or a ray.
® The Voronoi regions are convex.
® The (unweighted) Voronoi diagram has a linear combinatorial complexity in the worst case.




Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.




Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
® The Voronoi regions are (possibly) disconnected.
®* The MWVD has a quadratic combinatorial complexity in the worst case.




A Wavefront-Based Strategy

® We present a wavefront-based approach for computing MWVDs.

® The wavefront covers an increasing portion of the plane over time.

® |t consists of wavefront arcs and wavefront vertices.

® Whenever a wavefront arc appears or disappears, a new Voronoi node is discovered.
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Offset Circles

® Every site is associated with an offset circle.
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Offset Circles

® Every site is associated with an offset circle.
® Two moving vertices trace out the bisector as time progresses.
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® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.
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Offset Circles

® Every site is associated with an offset circle.

® Two moving vertices trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.



Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.
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Event Handling

® Collision and domination events mark the initial and last contact of two offset circles.
® Arc events happen whenever active arcs appear or disappeatr.

® These events are stored in a priority queue Q.
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Event Handling

® All topological changes of the wavefront are properly detected.

® A quadratic number of collision events are computed in any case.

® A moving vertex can be charged with a constant number of arc events.
* In the worst case O(n?) arc events take place.

e All events can be handled in O(logn) time.

* Therefore, the algorithm’s runtime equals O (n?logn) in the worst case.



Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.

® |nvalid collision are filtered in an additional preprocessing step.

® The average case behavior of the algorithm is improved by using an overlay arrangement.
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Candidate Sets

Candidate Set

The candidate set for a weighted nearest neighbor of ¢ € R? consists of all sites s € S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.
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Candidate Sets

Candidate Set

The candidate set for a weighted nearest neighbor of ¢ € R? consists of all sites s € S such that all
other sites in S either have a smaller weight or a larger Euclidean distance to q.

® Only sites within the same candidate set may collide.
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Overlay Arrangement

® A candidate set contains O(log n) many sites in the expected case [HPR15].

® The expected complexity of overlay arrangement is bounded by O(nlogn) [KRS11].
e Thus, we may expect to compute O(n log® n) many collisions.

® Our improved strategy computes VD, (S) in expected O(n log” n) time.




Implementation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).
® Qur code is available on GitHub under https://github.com/cgalab/wevo.
® |t can be freely used under the GNU General Public License 3.

Free as in Freedom
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https://github.com/cgalab/wevo

Experimental Evaluation: Runtime

® We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.
All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.

For all of these inputs, the weights were chosen uniformly at random.

® The point locations were either randomly chosen ...
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Experimental Evaluation: Runtime

® We tested our strategy on over 8000 different inputs ranging from 256 vertices to 500 000 vertices.

All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3 GHz.

® For all of these inputs, the weights were chosen uniformly at random.

® The point locations were either randomly chosen or derived from the Salzburg Database of
Polygonal Data [EHJ ™ 20].
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Experimental Evaluation: Number of Events

® We tracked the number of collision ...
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Experimental Evaluation: Number of Events

® We tracked the number of collision and arc events that occurred during our test runs.
® The number of arc events forms an upper bound on the number of Voronoi nodes.
® Random weights seem to result in a linear combinatorial complexity of the final MWVD.
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Experimental Evaluation: Non-Random Weights

® The actual geometric distribution of the sites does not have a significant impact on the runtime.
® QOur expected-case bounds only apply for inputs whose weights are chosen randomly.




Experimental Evaluation: Non-Random Weights

® The actual geometric distribution of the sites does not have a significant impact on the runtime.
® QOur expected-case bounds only apply for inputs whose weights are chosen randomly.
® How much do our experimental results depend on the randomness of the weights?




Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.
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* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].
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® We assign «-d(s)+68-7(s)/(a+p) as weight to s, where « > 0 and 8 > 0 are two arbitrary but fixed
numbers for all s € S.
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* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].
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Experimental Evaluation: Non-Random Weights

* We sampled points uniformly within a square with side-length /2.

® Let d(s) be the distance of the site s € .S from the center of the square, and let (s) be a number
uniformly distributed within the interval [0, 1].

® We assign «-d(s)+68-7(s)/(a+p) as weight to s, where « > 0 and 8 > 0 are two arbitrary but fixed
numbers for all s € S.
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Extension the Straight-Line Segments

® The strategy can be easily extended to also handle weighted straight-line segments.
® QOur notion of a “collision” needs to be refined.
® Thus, we distinguish between non-piercing ...
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Additional Extensions

® Qur (basic) algorithm is also able to deal with additive weights.
® Every offset circle that is associated with an additive weight gets a head-start.
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Additional Extensions

Our (basic) algorithm is also able to deal with additive weights.

Every offset circle that is associated with an additive weight gets a head-start.
® Our wavefront-based algorithm implies a simple strategy for computing one-dimensional MWVDs.

Thus, the one-dimensional MWVD can be computed in worst-case optimal O(nlogn) time and
O(n) space.



Discussion

® We propose a fast, practical strategy to compute MWVDs.
® The expected runtime is improved by using an overlay arrangement.
® We provide a robust implementation using exact arithmetic.
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® We propose a fast, practical strategy to compute MWVDs.

® The expected runtime is improved by using an overlay arrangement.

® We provide a robust implementation using exact arithmetic
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