On Implementing Multiplicatively Weighted Voronoi
Diagrams

Martin Held" Stefan de Lorenzo'

1 University of Salzburg, Department of Computer Science

March 16, 2020

UNIVERSITAT SALZBURG
Computational Geometry and Applications Lab

Problem Specification

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0

16
13
° e 922
23 1
1, %
” 14
7 []
Py []
20
[}
019

Problem Specification

Problem

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VD,,(S) of S.

Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.

Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
® The Voronoi regions are (possibly) disconnected.
®* The MWVD has a quadratic combinatorial complexity in the worst case.

Overview

We present a wavefront-based approach for computing MWVDs.

The wavefront covers an increasing portion of the plane over time.

It consists of wavefront arcs and wavefront vertices.

Whenever a wavefront arc vanishes or spawns, a new Voronoi node is discovered.

/ | 4
lc6O:

\

Offset Circles

® Every site is associated with an offset circle.

S1

Offset Circles

® Every site is associated with an offset circle.
® Two moving intersection points trace out the bisector as time progresses.

Offset Circles

® Every site is associated with an offset circle.

® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

D

Offset Circles

® Every site is associated with an offset circle.

® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

Offset Circles

® Every site is associated with an offset circle.

® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

/

Offset Circles

® Every site is associated with an offset circle.

® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

O, ()
o () ©
O

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

) (-
c»g’c

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.

Event Handling

® All topological changes of the wavefront are properly detected.

® A quadratic number of collision events are computed in any case.

® A moving intersection can be charged with a constant number of arc events.
* In the worst case O(n?) arc events take place.

e All events can be handled in O(logn) time.

® Therefore, the algorithms runtime is O(n?log n) in the worst case.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

L e

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.

Overlay Arrangement

® Only sites within the same candidate set may collide.

® A candidate set contains O(log n) many sites in the expected case [HPR15].

® The expected complexity of overlay arrangement is bound by O(n logn) [KRS11].
® Thus, it is necessary to compute O(nlog® n) many collisions.

Experimental Evaluation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).

® We tested our strategy on 3800 randomly generated inputs.
® All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.

S 3.0 14 7
[e)
< 284 g
7 ER
£ 2.6 1 g
m m 12 A
5 247 E
2} -
= 221 3 11
O N
¥ 2.0 - 104 ¢
163 164 165
Input size

10

]

Experimental Evaluation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).

® We tested our strategy on 3800 randomly generated inputs.
® All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.

= 150 A
N
o0
2
S
g 100 A
£
=
=

50 1

LAY | MR | LR | T
103 10* 10°
Input size
Overlay arrangement Event queue Overall runtime

10

Extensions

® Qur (basic) algorithm is also able to deal with additive weights.
® The strategy can be easily extended to also handle weighted straight-line segments.

LEYeR

((\KKKKK\\K\(

([] g ¢) 7 3
(@@\‘{Q@Eﬂ%@ -/,"))))

\\\ _

Discussion

® We propose a fast, practical strategy to compute MWVDs.
® The expected runtime is improved by using an overlay arrangement.
® We provide a robust implementation using exact arithmetic.

}I’ /] \I
ot e,

) N a\v i(.., @JJ

—) = »rw \)‘-/1
LB INA f
@muww,//d»ew\ e e
/(an&v \Mﬂm&/ﬁ o

X QJMV.@.A

=

(@
(

)
)

® The expected runtime is improved by using an overlay arrangement.

® We propose a fast, practical strategy to compute MWVDs.
® We provide a robust implementation using exact arithmetic

c
.2
n
9]
]
)
5
(@]

12

References |

Sariel Har-Peled and Benjamin Raichel.
On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams.
Discrete Comput. Geom., 53(3):547-568, 2015.

Haim Kaplan, Edgar Ramos, and Micha Sharir.
The Overlay of Minimization Diagrams in a Randomized Incremental Construction.
Discrete Comput. Geom., 45(3):371-382, 2011.

13

	Introduction
	Wavefront Propagation
	Overlay Arrangement
	Experimental Evaluation
	Extensions
	Conclusion
	References

