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Problem Specification

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0
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Problem Specification

Problem

Given: A set S of n input points in the plane, where every s € S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VD,,(S) of S.




Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.




Multiplicatively Weighted Voronoi Diagrams

® The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
® The Voronoi regions are (possibly) disconnected.
®* The MWVD has a quadratic combinatorial complexity in the worst case.




Overview

We present a wavefront-based approach for computing MWVDs.

The wavefront covers an increasing portion of the plane over time.

It consists of wavefront arcs and wavefront vertices.

Whenever a wavefront arc vanishes or spawns, a new Voronoi node is discovered.
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Offset Circles

® Every site is associated with an offset circle.
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® Two moving intersection points trace out the bisector as time progresses.
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® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.
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Offset Circles

® Every site is associated with an offset circle.

® Two moving intersection points trace out the bisector as time progresses.
® Inactive arcs along the offset circles are eliminated.

® The active arcs are stored in sorted angular order.



Event Handling

® Collision and domination events mark the initial and last contact of a two offset circles.
® Arc events happen whenever active arcs vanish or spawn.

® These events are stored in a priority queue Q.

® The angular order of active arcs only changes at events.
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Event Handling

® All topological changes of the wavefront are properly detected.

® A quadratic number of collision events are computed in any case.

® A moving intersection can be charged with a constant number of arc events.
* In the worst case O(n?) arc events take place.

e All events can be handled in O(logn) time.

® Therefore, the algorithms runtime is O(n?log n) in the worst case.



Reducing the Number of Collisions

® A vast number of collisions are invalid for general input.

® The calculation of all possible collision requires a high computational effort.
® |nvalid collision are filtered in an additional preprocessing step.

® Thus, the average case behavior of the algorithm is improved.
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Overlay Arrangement

® Only sites within the same candidate set may collide.

® A candidate set contains O(log n) many sites in the expected case [HPR15].

® The expected complexity of overlay arrangement is bound by O(n logn) [KRS11].
® Thus, it is necessary to compute O(nlog® n) many collisions.




Experimental Evaluation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).

® We tested our strategy on 3800 randomly generated inputs.
® All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.
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Experimental Evaluation

® The implementation is based on the Computational Geometry Algorithms Library (CGAL).

® We tested our strategy on 3800 randomly generated inputs.
® All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.
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Extensions

® Qur (basic) algorithm is also able to deal with additive weights.
® The strategy can be easily extended to also handle weighted straight-line segments.
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Discussion

® We propose a fast, practical strategy to compute MWVDs.
® The expected runtime is improved by using an overlay arrangement.
® We provide a robust implementation using exact arithmetic.




}I’ /] \I
ot e,

) N a\v i(.., @JJ

—) = »rw \)‘-/1
LB INA f
@muww,//d»ew\ e e
/(an&v \Mﬂm&/ﬁ o

X QJMV.@.A

=

(@
(

)
)

® The expected runtime is improved by using an overlay arrangement.

® We propose a fast, practical strategy to compute MWVDs.
® We provide a robust implementation using exact arithmetic
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