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Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.
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Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VDw(S) of S.
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Multiplicatively Weighted Voronoi Diagrams

• The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
• The Voronoi regions are (possibly) disconnected.
• The MWVD has a quadratic combinatorial complexity in the worst case.
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Overview

• We present a wavefront-based approach for computing MWVDs.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc vanishes or spawns, a new Voronoi node is discovered.
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Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.
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Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.
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Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving intersection can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.
• Therefore, the algorithms runtime is O(n2 logn) in the worst case.
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Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.
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Overlay Arrangement

• Only sites within the same candidate set may collide.
• A candidate set contains O(logn) many sites in the expected case [HPR15].
• The expected complexity of overlay arrangement is bound by O(n logn) [KRS11].
• Thus, it is necessary to compute O(n log3 n) many collisions.
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Experimental Evaluation

• The implementation is based on the Computational Geometry Algorithms Library (CGAL).
• We tested our strategy on 3800 randomly generated inputs.
• All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.
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Extensions

• Our (basic) algorithm is also able to deal with additive weights.
• The strategy can be easily extended to also handle weighted straight-line segments.
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Discussion

• We propose a fast, practical strategy to compute MWVDs.
• The expected runtime is improved by using an overlay arrangement.
• We provide a robust implementation using exact arithmetic.

Thank you for your attention!
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