
On Implementing Multiplicatively Weighted Voronoi
Diagrams

Martin Held1 Stefan de Lorenzo1

1University of Salzburg, Department of Computer Science

March 16, 2020

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG

Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.

23
22

21

20

19

16

14

13

10

7

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 2

Problem Specification

Problem
Given: A set S of n input points in the plane, where every s ∈ S is associated with a weight w(s) > 0.
Compute: The multiplicatively weighted Voronoi diagram (MWVD) VDw(S) of S.

23
22

21

20

19

16

14

13

10

7

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 2

Multiplicatively Weighted Voronoi Diagrams

• The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
• The Voronoi regions are (possibly) disconnected.
• The MWVD has a quadratic combinatorial complexity in the worst case.

23
22

21

20

19

16

14

13

10

7

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 3

Multiplicatively Weighted Voronoi Diagrams

• The Voronoi edges are formed by straight-line segments, rays, and circular arcs.
• The Voronoi regions are (possibly) disconnected.
• The MWVD has a quadratic combinatorial complexity in the worst case.

23
22

21

20

19

16

14

13

10

7

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 3

Overview

• We present a wavefront-based approach for computing MWVDs.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc vanishes or spawns, a new Voronoi node is discovered.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Offset Circles

• Every site is associated with an offset circle.
• Two moving intersection points trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

s2

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• Collision and domination events mark the initial and last contact of a two offset circles.
• Arc events happen whenever active arcs vanish or spawn.
• These events are stored in a priority queue Q.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6

Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving intersection can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.
• Therefore, the algorithms runtime is O(n2 logn) in the worst case.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 7

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1
s2

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1
s2

s3

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1
s2

s3

s4

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1
s2

s3

s4

s5

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Reducing the Number of Collisions

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• Thus, the average case behavior of the algorithm is improved.

s1
s2

s3

s4

s5

s6

s7

s8
s9

s10

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8

Overlay Arrangement

• Only sites within the same candidate set may collide.
• A candidate set contains O(logn) many sites in the expected case [HPR15].
• The expected complexity of overlay arrangement is bound by O(n logn) [KRS11].
• Thus, it is necessary to compute O(n log3 n) many collisions.

s1
s2

s3

s4

s5

s6

s7

s8
s9

s10

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 9

Experimental Evaluation

• The implementation is based on the Computational Geometry Algorithms Library (CGAL).
• We tested our strategy on 3800 randomly generated inputs.
• All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.

103 104 105

Input size

2.0

2.2

2.4

2.6

2.8

3.0

#
C

o
ll
is

io
n

E
v
en

ts
/
n

lo
g
n

103 104 105

Input size

10

11

12

13

14

#
A

rc
E

v
en

ts
/
n

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10

Experimental Evaluation

• The implementation is based on the Computational Geometry Algorithms Library (CGAL).
• We tested our strategy on 3800 randomly generated inputs.
• All tests were carried out on an Intel Core i7-6700 clocked at 3.40GHz.

103 104 105

Input size

50

100

150

R
u
n
ti

m
e/
n

lo
g

2
n

Overlay arrangement Event queue Overall runtime

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10

Extensions

• Our (basic) algorithm is also able to deal with additive weights.
• The strategy can be easily extended to also handle weighted straight-line segments.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 11

Discussion

• We propose a fast, practical strategy to compute MWVDs.
• The expected runtime is improved by using an overlay arrangement.
• We provide a robust implementation using exact arithmetic.

Thank you for your attention!

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 12

Discussion

• We propose a fast, practical strategy to compute MWVDs.
• The expected runtime is improved by using an overlay arrangement.
• We provide a robust implementation using exact arithmetic.

Thank you for your attention!

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 12

References I

Sariel Har-Peled and Benjamin Raichel.
On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams.
Discrete Comput. Geom., 53(3):547–568, 2015.

Haim Kaplan, Edgar Ramos, and Micha Sharir.
The Overlay of Minimization Diagrams in a Randomized Incremental Construction.
Discrete Comput. Geom., 45(3):371–382, 2011.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 13

	Introduction
	Wavefront Propagation
	Overlay Arrangement
	Experimental Evaluation
	Extensions
	Conclusion
	References

