
Generalized Voronoi Diagrams:
Theory and Related Applications

Stefan de Lorenzo
University of Salzburg, Department of Computer Science

October 5, 2021

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 2



Wavefront Propagation

The wavefront WF(t) at time t consists of wavefront arcs and wavefront vertices.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 3



Wavefront Propagation

The wavefront WF(t) at time t consists of wavefront arcs and wavefront vertices.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 3



Wavefront Propagation

The wavefront WF(t) at time t consists of wavefront arcs and wavefront vertices.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 3



The Voronoi Diagram of Points

• Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Voronoi Diagram of Points

• Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Voronoi Diagram of Points

s1 s2s1

• Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Voronoi Diagram of Points

• Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Voronoi Diagram of Points

s1

• Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Voronoi Diagram of Points

p

q • Let S be a set of input sites in the plane.
• The Voronoi diagram VD(S) is a versatile tool in

computational geometry.
• It consists of Voronoi edge and Voronoi nodes.
• Each Voronoi edges is situated on a bisector that is defined by

a pair of input sites.
• The Voronoi diagram subdivides the Euclidean space into

Voronoi regions.
• Every input site is associated with such a region.
• Each Voronoi region is convex.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 4



The Delaunay Triangulation

• The Delaunay triangulation can be derived in linear time from
the corresponding Voronoi diagram.
• Neighbors in VD(S) are connected via a triangulation edge.
• The Delaunay triangulation is the dual graph of the Voronoi

diagram.
• It maximizes the minimum angle inside a triangle over all

possible triangulations.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5



The Delaunay Triangulation

• The Delaunay triangulation can be derived in linear time from
the corresponding Voronoi diagram.
• Neighbors in VD(S) are connected via a triangulation edge.
• The Delaunay triangulation is the dual graph of the Voronoi

diagram.
• It maximizes the minimum angle inside a triangle over all

possible triangulations.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5



The Delaunay Triangulation

• The Delaunay triangulation can be derived in linear time from
the corresponding Voronoi diagram.
• Neighbors in VD(S) are connected via a triangulation edge.
• The Delaunay triangulation is the dual graph of the Voronoi

diagram.
• It maximizes the minimum angle inside a triangle over all

possible triangulations.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 5



Computing the Voronoi Diagram

Theorem (Shamos and Hoey 1975)

The Voronoi diagram of n input points can be computed
in O(n logn) time and O(n) space using a divide-and-
conquer strategy.

Theorem (Fortune 1987)

The Voronoi diagram of n input points can be computed in
O(n logn) time and O(n) space using a sweepline algo-
rithm.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 6



Voronoi Diagrams in Nature

Credit: Keats 2009

Credit: Hillewaert 2010 Credit: Rader 2009

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 7



Voronoi Diagrams in Nature

Credit: Keats 2009 Credit: Hillewaert 2010

Credit: Rader 2009

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 7



Voronoi Diagrams in Nature

Credit: Keats 2009 Credit: Hillewaert 2010 Credit: Rader 2009

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 7



Allowing Other Types of Input Sites

The Voronoi diagram can be generalized by allowing other types of
input sites such as ...

Theorem (Yap 1987)

It is possible to generate the Voronoi diagram of n straight-
line segments and circular arcs in optimal O(n logn) time.

Theorem (Held and Huber 2009)

The Voronoi diagram of n points, straight-line segments, and
circular arcs can be computed in expected O(n logn) time.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8



Allowing Other Types of Input Sites

The Voronoi diagram can be generalized by allowing other types of
input sites such as straight-line segments ...

Theorem (Yap 1987)

It is possible to generate the Voronoi diagram of n straight-
line segments and circular arcs in optimal O(n logn) time.

Theorem (Held and Huber 2009)

The Voronoi diagram of n points, straight-line segments, and
circular arcs can be computed in expected O(n logn) time.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8



Allowing Other Types of Input Sites

The Voronoi diagram can be generalized by allowing other types of
input sites such as straight-line segments and circular arcs.

Theorem (Yap 1987)

It is possible to generate the Voronoi diagram of n straight-
line segments and circular arcs in optimal O(n logn) time.

Theorem (Held and Huber 2009)

The Voronoi diagram of n points, straight-line segments, and
circular arcs can be computed in expected O(n logn) time.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8



Allowing Other Types of Input Sites

The Voronoi diagram can be generalized by allowing other types of
input sites such as straight-line segments and circular arcs.

Theorem (Yap 1987)

It is possible to generate the Voronoi diagram of n straight-
line segments and circular arcs in optimal O(n logn) time.

Theorem (Held and Huber 2009)

The Voronoi diagram of n points, straight-line segments, and
circular arcs can be computed in expected O(n logn) time.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 8



Multiplicatively Weighted Voronoi Diagrams

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 9



Multiplicatively Weighted Voronoi Diagrams

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 9



Multiplicatively Weighted Voronoi Diagrams

23
22

21

20

19

16

14

13

10

7

• Consider a set S of point sites in the Euclidean plane.
• We associate every site s with a real-valued weight w(s) > 0.
• The offset circles expand at different rates.
• A Voronoi edge is (in general) formed by circular arcs.
• The Voronoi regions are (possibly) disconnected.

Definition (Weighted Distance)

The (multiplicatively) weighted distance dw(p, s) be-
tween a weighted site s ∈ S and a points p ∈ R2 is given
by

dw(p, s) :=
d(p, s)

w(s)
.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10



Multiplicatively Weighted Voronoi Diagrams

23
22

21

20

19

16

14

13

10

7

• Consider a set S of point sites in the Euclidean plane.
• We associate every site s with a real-valued weight w(s) > 0.
• The offset circles expand at different rates.
• A Voronoi edge is (in general) formed by circular arcs.
• The Voronoi regions are (possibly) disconnected.

Definition (Weighted Distance)

The (multiplicatively) weighted distance dw(p, s) be-
tween a weighted site s ∈ S and a points p ∈ R2 is given
by

dw(p, s) :=
d(p, s)

w(s)
.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10



Multiplicatively Weighted Voronoi Diagrams

• Consider a set S of point sites in the Euclidean plane.
• We associate every site s with a real-valued weight w(s) > 0.
• The offset circles expand at different rates.
• A Voronoi edge is (in general) formed by circular arcs.
• The Voronoi regions are (possibly) disconnected.

Definition (Weighted Distance)

The (multiplicatively) weighted distance dw(p, s) be-
tween a weighted site s ∈ S and a points p ∈ R2 is given
by

dw(p, s) :=
d(p, s)

w(s)
.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10



Multiplicatively Weighted Voronoi Diagrams

23
22

21

20

19

16

14

13

10

7

• Consider a set S of point sites in the Euclidean plane.
• We associate every site s with a real-valued weight w(s) > 0.
• The offset circles expand at different rates.
• A Voronoi edge is (in general) formed by circular arcs.
• The Voronoi regions are (possibly) disconnected.

Definition (Weighted Distance)

The (multiplicatively) weighted distance dw(p, s) be-
tween a weighted site s ∈ S and a points p ∈ R2 is given
by

dw(p, s) :=
d(p, s)

w(s)
.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10



Multiplicatively Weighted Voronoi Diagrams

23
22

21

20

19

16

14

13

10

7

• Consider a set S of point sites in the Euclidean plane.
• We associate every site s with a real-valued weight w(s) > 0.
• The offset circles expand at different rates.
• A Voronoi edge is (in general) formed by circular arcs.
• The Voronoi regions are (possibly) disconnected.

Definition (Weighted Distance)

The (multiplicatively) weighted distance dw(p, s) be-
tween a weighted site s ∈ S and a points p ∈ R2 is given
by

dw(p, s) :=
d(p, s)

w(s)
.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 10



A Worst-Case Example

40

40

40

40
21 1815 10

Theorem (Aurenhammer and Edelsbrunner 1984)

The multiplicatively weighted Voronoi diagram of n in-
put sites has a combinatorial complexity ofO(n2) in the
worst case.

Theorem (Aurenhammer and Edelsbrunner 1984)

The multiplicatively weighted Voronoi diagram of n in-
put sites can be computed in (optimal) O(n2) time and
space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 11



A Worst-Case Example

40

40

40

40
21 1815 10

Theorem (Aurenhammer and Edelsbrunner 1984)

The multiplicatively weighted Voronoi diagram of n in-
put sites has a combinatorial complexity ofO(n2) in the
worst case.

Theorem (Aurenhammer and Edelsbrunner 1984)

The multiplicatively weighted Voronoi diagram of n in-
put sites can be computed in (optimal) O(n2) time and
space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 11



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 12



A Wavefront-Based Strategy

23
22

21

20

19

16

14

13

10

7

Problem

Given: A set S of n input points in the plane, where every s ∈ S
is associated with a weight w(s) > 0.

Find: The multiplicatively weighted Voronoi diagram (MWVD)
VDw(S) of S.

• We present a wavefront-based approach for computing the MWVD.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc appears or disappears, a new Voronoi

node is discovered.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 13



A Wavefront-Based Strategy

23
22

21

20

19

16

14

13

10

7

Problem

Given: A set S of n input points in the plane, where every s ∈ S
is associated with a weight w(s) > 0.
Find: The multiplicatively weighted Voronoi diagram (MWVD)
VDw(S) of S.

• We present a wavefront-based approach for computing the MWVD.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc appears or disappears, a new Voronoi

node is discovered.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 13



A Wavefront-Based Strategy

23
22

21

20

19

16

14

13

10

7

Problem

Given: A set S of n input points in the plane, where every s ∈ S
is associated with a weight w(s) > 0.
Find: The multiplicatively weighted Voronoi diagram (MWVD)
VDw(S) of S.

• We present a wavefront-based approach for computing the MWVD.
• The wavefront covers an increasing portion of the plane over time.
• It consists of wavefront arcs and wavefront vertices.
• Whenever a wavefront arc appears or disappears, a new Voronoi

node is discovered.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 13



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Offset Circles

s1

s2
• Every site is associated with an offset circle.
• Two moving vertices trace out the bisector as time progresses.
• Inactive arcs along the offset circles are eliminated.
• The active arcs are stored in sorted angular order.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 14



Event Handling

• Collision and domination events mark the initial and last
contact of two offset circles.
• Arc events happen whenever active arcs appear or disappear.
• These events are stored in a priority queue.
• The angular order of active arcs only changes at events.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 15



Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving vertex can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of nweighted point
sites in R2 can be computed in O(n2 logn) time
and O(n2) space.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of n weighted
point sites in one dimension can be computed in
O(n logn) time and O(n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 16



Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving vertex can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of nweighted point
sites in R2 can be computed in O(n2 logn) time
and O(n2) space.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of n weighted
point sites in one dimension can be computed in
O(n logn) time and O(n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 16



Event Handling

• All topological changes of the wavefront are properly detected.
• A quadratic number of collision events are computed in any case.
• A moving vertex can be charged with a constant number of arc events.
• In the worst case O(n2) arc events take place.
• All events can be handled in O(logn) time.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of nweighted point
sites in R2 can be computed in O(n2 logn) time
and O(n2) space.

Theorem (Held and de Lorenzo 2020)

The MWVD VDw(S) of a set S of n weighted
point sites in one dimension can be computed in
O(n logn) time and O(n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 16



Reducing the Number of Collisions

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

s1

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

s1

s2

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

s1

s2

s3

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

s1

s2

s3

s4

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Reducing the Number of Collisions

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Theorem (Har-Peled and Raichel 2015)

Let S be a set of n points in the plane, where for each
point we independently sample a weight from some distri-
bution. Then the expected complexity of the MWVD of S is
O(n log2 n).

• A vast number of collisions are invalid for general input.
• The calculation of all possible collision requires a high

computational effort.
• Invalid collision are filtered in an additional preprocessing step.
• The average case behavior of the algorithm is improved by

using an overlay arrangement.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 17



Candidate Sets

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Definition (Candidate Set)

The candidate set for a weighted nearest neighbor of q ∈
R2 consists of all sites s ∈ S such that all other sites in S
either have a smaller weight or a larger Euclidean distance
to q.

• Only sites within the same candidate set may collide.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 18



Candidate Sets

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Definition (Candidate Set)

The candidate set for a weighted nearest neighbor of q ∈
R2 consists of all sites s ∈ S such that all other sites in S
either have a smaller weight or a larger Euclidean distance
to q.

• Only sites within the same candidate set may collide.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 18



Overlay Arrangement

Lemma (Har-Peled and Raichel 2015)

For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

Theorem (Kaplan, Ramos, and Sharir 2011)

The expected complexity of overlay arrangement is
bounded by O(n logn).

Theorem (Held and de Lorenzo 2020)

All collision events can be determined in
O(n log3 n) expected time by computing the
overlay arrangement of a set S of n input sites.

Theorem (Held and de Lorenzo 2020)

A wavefront-based approach allows to compute
the MWVD of a set S of n (randomly) weighted
point sites in expected O(n log4 n) time and ex-
pected O(n log3 n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 19



Overlay Arrangement

Lemma (Har-Peled and Raichel 2015)

For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

Theorem (Kaplan, Ramos, and Sharir 2011)

The expected complexity of overlay arrangement is
bounded by O(n logn).

Theorem (Held and de Lorenzo 2020)

All collision events can be determined in
O(n log3 n) expected time by computing the
overlay arrangement of a set S of n input sites.

Theorem (Held and de Lorenzo 2020)

A wavefront-based approach allows to compute
the MWVD of a set S of n (randomly) weighted
point sites in expected O(n log4 n) time and ex-
pected O(n log3 n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 19



Overlay Arrangement

Lemma (Har-Peled and Raichel 2015)

For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

Theorem (Kaplan, Ramos, and Sharir 2011)

The expected complexity of overlay arrangement is
bounded by O(n logn).

Theorem (Held and de Lorenzo 2020)

All collision events can be determined in
O(n log3 n) expected time by computing the
overlay arrangement of a set S of n input sites.

Theorem (Held and de Lorenzo 2020)

A wavefront-based approach allows to compute
the MWVD of a set S of n (randomly) weighted
point sites in expected O(n log4 n) time and ex-
pected O(n log3 n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 19



Overlay Arrangement

Lemma (Har-Peled and Raichel 2015)

For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

Theorem (Kaplan, Ramos, and Sharir 2011)

The expected complexity of overlay arrangement is
bounded by O(n logn).

Theorem (Held and de Lorenzo 2020)

All collision events can be determined in
O(n log3 n) expected time by computing the
overlay arrangement of a set S of n input sites.

Theorem (Held and de Lorenzo 2020)

A wavefront-based approach allows to compute
the MWVD of a set S of n (randomly) weighted
point sites in expected O(n log4 n) time and ex-
pected O(n log3 n) space.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 19



Experimental Evaluation

• The implementation is based on the Computational Geometry Algorithms Library (CGAL).
• We tested our strategy on over 3000 different inputs ranging from 256 vertices to 500 000 vertices.
• All tests were carried out on an Intel Core i9-7900X processor clocked at 3.3GHz.
• For all of these inputs, the weights and point locations were chosen uniformly at random.

102 103 104 105

Input size

40

60

80

100

120

140

R
u

n
ti

m
e/
n

lo
g

2
n

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 20



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 21



Problem Specification

Problem

Given: A set S of n points in the plane.

Find: A plane graph with vertex set S (with each point in S having positive degree) that partitions the convex
hull of S into the smallest possible number of convex faces. Note that collinear points are allowed on face
boundaries, so all internal angles of a face are at most π.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 22



Problem Specification

Problem

Given: A set S of n points in the plane.
Find: A plane graph with vertex set S (with each point in S having positive degree) that partitions the convex
hull of S into the smallest possible number of convex faces. Note that collinear points are allowed on face
boundaries, so all internal angles of a face are at most π.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 22



Problem Specification

Problem

Given: A set S of n points in the plane.
Find: A plane graph with vertex set S (with each point in S having positive degree) that partitions the convex
hull of S into the smallest possible number of convex faces. Note that collinear points are allowed on face
boundaries, so all internal angles of a face are at most π.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 22



3-Approximation

• The 3APX tool implements the algorithm by Knauer and Spillner 2006.
• We extended 3APX by an approach based on onion layers.
• The decompositions generated contained lots of extremely long and thin triangles.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 23



3-Approximation

• The 3APX tool implements the algorithm by Knauer and Spillner 2006.
• We extended 3APX by an approach based on onion layers.
• The decompositions generated contained lots of extremely long and thin triangles.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 23



3-Approximation

• The 3APX tool implements the algorithm by Knauer and Spillner 2006.
• We extended 3APX by an approach based on onion layers.
• The decompositions generated contained lots of extremely long and thin triangles.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 23



Merging Triangles

• Simple idea: Start with a Delaunay triangulation ...
• Our first implementation MERGEREFINE easily beat 3APX.
• This initial success motivated the development of a more sophisticated strategy.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 24



Merging Triangles

• Simple idea: Start with a Delaunay triangulation and merge neighboring faces.
• Our first implementation MERGEREFINE easily beat 3APX.
• This initial success motivated the development of a more sophisticated strategy.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 24



Merging Triangles

• Simple idea: Start with a Delaunay triangulation and merge neighboring faces.
• Our first implementation MERGEREFINE easily beat 3APX.
• This initial success motivated the development of a more sophisticated strategy.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 24



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



An Improved Implementation

• RECURSOR introduces several heuristics.
• Hole refinement : Re-triangulate holes in a decomposition. Drop the newly inserted edges randomly without

violating the convexity of the faces.
• Edge flips: Perform random edge flips on the triangulation of a hole.
• Continuous refinement : Load a previous decomposition and try to improve it.
• Parallel recursor : Partition a decomposition into several non-overlapping sets of faces.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 25



Flipping Edges

• FLIPPER was implemented relatively late.
• It picks a high degree vertex and rotates incident edges.
• Unnecessary edges are removed.
• FLIPPER interacts with RECURSOR as it re-structures the respective decompositions.

v

uu1

u0

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 26



Flipping Edges

• FLIPPER was implemented relatively late.
• It picks a high degree vertex and rotates incident edges.
• Unnecessary edges are removed.
• FLIPPER interacts with RECURSOR as it re-structures the respective decompositions.

v

uu1

u0

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 26



Example Decomposition

3APX (random)

#Faces 111

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 27



Example Decomposition

3APX (random)→ 3APX (onion)

#Faces 100

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 27



Example Decomposition

3APX (random)→ 3APX (onion)→ MERGEREFINE

#Faces 63

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 27



Example Decomposition

3APX (random)→ 3APX (onion)→ MERGEREFINE → RECURSOR + FLIPPER

#Faces 54

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 27



Score Over Time

• We ran our tools on a wide variety of
different computers.
• The estimated quality of a given

decomposition is based on its score.

score :=
number of edges in convex partition

number of edges in triangulation

Skip

0.6

0.8

0.506

0.508

0.510

Nov Dec Jan Feb

0.5041

0.5042

0.5043

0.5044

0.5045

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

3Apx

3Apx-onion

3Apx-onion+partition

MergeRefine

Recursor

Recursor (+ local refinement)

Recursor (+ random edge flips)

Recursor (+ improve on previous decompositions)

Recursor+partition

Flipper

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 28



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 29



Variable-Radius Skeleton

• The Voronoi regions of the generalized weighted Voronoi Diagrams are
possibly disconnected.

• Thus, we introduce the variable-radius skeleton.
• It has a linear combinatorial complexity as its region stay connected in

any case.
• Variable-radius roofs can be derived from variable-radius skeletons.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 30



Variable-Radius Skeleton

• The Voronoi regions of the generalized weighted Voronoi Diagrams are
possibly disconnected.

• Thus, we introduce the variable-radius skeleton.
• It has a linear combinatorial complexity as its region stay connected in

any case.
• Variable-radius roofs can be derived from variable-radius skeletons.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 30



Variable-Radius Skeleton

• The Voronoi regions of the generalized weighted Voronoi Diagrams are
possibly disconnected.

• Thus, we introduce the variable-radius skeleton.
• It has a linear combinatorial complexity as its region stay connected in

any case.
• Variable-radius roofs can be derived from variable-radius skeletons.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 30



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 31



Recognition and Reconstruction of Weighted Bisector Graphs

Definition (Weighted Bisector Graph)

A weighted bisector graph is a geometric graph whose faces are
bounded by arcs that are portions of multiplicatively weighted bisec-
tors of pairs of (point) sites such that each of its faces is defined by
exactly one site.

Problem

Given: A partition G of the plane into faces.

Find: A set of points and suitable weights such that G is a bisector
graph of the weighted points, if a solution exists.

Theorem (Eder, Held, de Lorenzo, and Palfrader 2021)

If G is a graph that is regular of degree three then we can decide
in O(m) time whether it is a bisector graph, where m denotes the
combinatorial complexity of G.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 32



Recognition and Reconstruction of Weighted Bisector Graphs

Definition (Weighted Bisector Graph)

A weighted bisector graph is a geometric graph whose faces are
bounded by arcs that are portions of multiplicatively weighted bisec-
tors of pairs of (point) sites such that each of its faces is defined by
exactly one site.

Problem

Given: A partition G of the plane into faces.

Find: A set of points and suitable weights such that G is a bisector
graph of the weighted points, if a solution exists.

Theorem (Eder, Held, de Lorenzo, and Palfrader 2021)

If G is a graph that is regular of degree three then we can decide
in O(m) time whether it is a bisector graph, where m denotes the
combinatorial complexity of G.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 32



Recognition and Reconstruction of Weighted Bisector Graphs

23
22

21

20

19

16

14

13

10

7

Definition (Weighted Bisector Graph)

A weighted bisector graph is a geometric graph whose faces are
bounded by arcs that are portions of multiplicatively weighted bisec-
tors of pairs of (point) sites such that each of its faces is defined by
exactly one site.

Problem

Given: A partition G of the plane into faces.
Find: A set of points and suitable weights such that G is a bisector
graph of the weighted points, if a solution exists.

Theorem (Eder, Held, de Lorenzo, and Palfrader 2021)

If G is a graph that is regular of degree three then we can decide
in O(m) time whether it is a bisector graph, where m denotes the
combinatorial complexity of G.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 32



Recognition and Reconstruction of Weighted Bisector Graphs

23
22

21

20

19

16

14

13

10

7

Definition (Weighted Bisector Graph)

A weighted bisector graph is a geometric graph whose faces are
bounded by arcs that are portions of multiplicatively weighted bisec-
tors of pairs of (point) sites such that each of its faces is defined by
exactly one site.

Problem

Given: A partition G of the plane into faces.
Find: A set of points and suitable weights such that G is a bisector
graph of the weighted points, if a solution exists.

Theorem (Eder, Held, de Lorenzo, and Palfrader 2021)

If G is a graph that is regular of degree three then we can decide
in O(m) time whether it is a bisector graph, where m denotes the
combinatorial complexity of G.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 32



Overview

An Efficient, Practical Algorithm and Implementation for Com-
puting Multiplicatively Weighted Voronoi Diagrams
HELD AND DE LORENZO
Published in Proceedings of the 28th Annual European Symposium
on Algorithms (ESA 2020)

Weighted Skeletal Structures for Computing Variable-Radius
Offsets
HELD AND DE LORENZO
Published in Computer-Aided Design and Applications (CAD&A
2021)

On the Recognition and Reconstruction of Weighted Voronoi
Diagrams and Bisector Graphs
EDER, HELD, DE LORENZO, AND PALFRADER
Submitted to Computational Geometry: Theory and Applications

On the Generation of Spiral-Like Paths Within Planar Shapes
HELD AND DE LORENZO
Published in Journal of Computational Design and Engineering
(JCDE 2018)

Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions
EDER, HELD, DE LORENZO, AND PALFRADER
Published in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020)

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 33



On the Generation of Spiral-Like Paths Within Planar Shapes

Problem

Given: A planar shape P that is bounded by straight-line seg-
ments and circular arcs as well as a step-over value δ > 0.

Find: A spiral path that (1) consists of straight-line segments,
(2) has no self-intersections, (3) starts in the interior and ends
at the boundary of the shape, and (4) respects the user-
specified maximum step-over distance δ.

• Our approach is based on the medial axis within P .
• For high-speed machining, it is important to avoid sharp corners.
• Thus, we smooth the spiral path using cubic B-splines.
• Additionally, it is also possible to generate double spirals.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 34



On the Generation of Spiral-Like Paths Within Planar Shapes

Problem

Given: A planar shape P that is bounded by straight-line seg-
ments and circular arcs as well as a step-over value δ > 0.
Find: A spiral path that (1) consists of straight-line segments,
(2) has no self-intersections, (3) starts in the interior and ends
at the boundary of the shape, and (4) respects the user-
specified maximum step-over distance δ.

• Our approach is based on the medial axis within P .
• For high-speed machining, it is important to avoid sharp corners.
• Thus, we smooth the spiral path using cubic B-splines.
• Additionally, it is also possible to generate double spirals.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 34



On the Generation of Spiral-Like Paths Within Planar Shapes

Problem

Given: A planar shape P that is bounded by straight-line seg-
ments and circular arcs as well as a step-over value δ > 0.
Find: A spiral path that (1) consists of straight-line segments,
(2) has no self-intersections, (3) starts in the interior and ends
at the boundary of the shape, and (4) respects the user-
specified maximum step-over distance δ.

• Our approach is based on the medial axis within P .
• For high-speed machining, it is important to avoid sharp corners.
• Thus, we smooth the spiral path using cubic B-splines.
• Additionally, it is also possible to generate double spirals.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 34



On the Generation of Spiral-Like Paths Within Planar Shapes

Problem

Given: A planar shape P that is bounded by straight-line seg-
ments and circular arcs as well as a step-over value δ > 0.
Find: A spiral path that (1) consists of straight-line segments,
(2) has no self-intersections, (3) starts in the interior and ends
at the boundary of the shape, and (4) respects the user-
specified maximum step-over distance δ.

• Our approach is based on the medial axis within P .
• For high-speed machining, it is important to avoid sharp corners.
• Thus, we smooth the spiral path using cubic B-splines.
• Additionally, it is also possible to generate double spirals.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 34



On the Generation of Spiral-Like Paths Within Planar Shapes

Problem

Given: A planar shape P that is bounded by straight-line seg-
ments and circular arcs as well as a step-over value δ > 0.
Find: A spiral path that (1) consists of straight-line segments,
(2) has no self-intersections, (3) starts in the interior and ends
at the boundary of the shape, and (4) respects the user-
specified maximum step-over distance δ.

• Our approach is based on the medial axis within P .
• For high-speed machining, it is important to avoid sharp corners.
• Thus, we smooth the spiral path using cubic B-splines.
• Additionally, it is also possible to generate double spirals.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 34



The End

Thank you for your attention!

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 35



The End

Thank you for your attention!

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 35



References I

Aurenhammer, Franz and Herbert Edelsbrunner (1984). “An Optimal Algorithm for Constructing the Weighted Voronoi
Diagram in the Plane”. In: Pattern Recognition 17.2, pp. 251–257. DOI: 10.1016/0031-3203(84)90064-5.

Eder, Günther, Martin Held, Stefan de Lorenzo, and Peter Palfrader (June 2020). “Computing Low-Cost Convex
Partitions for Planar Point Sets Based on Tailored Decompositions”. In: Proceedings of the 36th International
Symposium on Computational Geometry (SoCG 2020). Vol. 164. Leibniz International Proceedings in Informatics
(LIPIcs). Zürich, Switzerland: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 85:1–85:10. ISBN:
978-3-95977-143-6. DOI: 10.4230/LIPIcs.SoCG.2020.85.

– (Feb. 2021). “On the Recognition and Reconstruction of Weighted Voronoi Diagrams and Bisector Graphs”.
Submitted to Computational Geometry: Theory and Applications.

Fortune, Steven (1987). “A Sweepline Algorithm for Voronoi Diagrams”. In: Algorithmica 2.1-4, p. 153. DOI:
10.1007/BF01840357.

Har-Peled, Sariel and Benjamin Raichel (2015). “On the Complexity of Randomly Weighted Multiplicative Voronoi
Diagrams”. In: Discrete & Computational Geometry 53.3, pp. 547–568. DOI: 10.1007/s00454-015-9675-0.

Held, Martin and Stefan de Lorenzo (July 2018). “On the Generation of Spiral-Like Paths Within Planar Shapes”. In:
Journal of Computational Design and Engineering (JCDE 2018) 5.3, pp. 348–357. DOI:
10.1016/j.jcde.2017.11.011.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 36

https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.4230/LIPIcs.SoCG.2020.85
https://doi.org/10.1007/BF01840357
https://doi.org/10.1007/s00454-015-9675-0
https://doi.org/10.1016/j.jcde.2017.11.011


References II

Held, Martin and Stefan de Lorenzo (Aug. 2020). “An Efficient, Practical Algorithm and Implementation for Computing
Multiplicatively Weighted Voronoi Diagrams”. In: Proceedings of the 28th Annual European Symposium on
Algorithms (ESA 2020). Vol. 173. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 56:1–56:15. ISBN: 978-3-95977-162-7. DOI:
10.4230/LIPIcs.ESA.2020.56.

– (Jan. 2021). “Weighted Skeletal Structures for Computing Variable-Radius Offsets”. In: Computer-Aided Design
and Applications (CAD&A 2021) 18.5, pp. 875–889. DOI: 10.14733/cadaps.2021.875-889.

Held, Martin and Stefan Huber (2009). “Topology-Oriented Incremental Computation of Voronoi Diagrams of Circular
Arcs and Straight-Line Segments”. In: Computer-Aided Design 41.5, pp. 327–338. DOI:
10.1016/j.cad.2008.08.004.

Hillewaert, Hans (2010). Giraffa Camelopardalis Rothschildi. URL:
https://commons.wikimedia.org/wiki/File:Giraffa_camelopardalis_rothschildi_(pattern).jpg.

Kaplan, Haim, Edgar Ramos, and Micha Sharir (2011). “The Overlay of Minimization Diagrams in a Randomized
Incremental Construction”. In: Discrete & Computational Geometry 45.3, pp. 371–382. DOI:
10.1007/s00454-010-9324-6.

Keats, Derek (2009). Coral Patterns Closer. URL:
https://commons.wikimedia.org/wiki/File:Coral_patterns_closer_(6163706598).jpg.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 37

https://doi.org/10.4230/LIPIcs.ESA.2020.56
https://doi.org/10.14733/cadaps.2021.875-889
https://doi.org/10.1016/j.cad.2008.08.004
https://commons.wikimedia.org/wiki/File:Giraffa_camelopardalis_rothschildi_(pattern).jpg
https://doi.org/10.1007/s00454-010-9324-6
https://commons.wikimedia.org/wiki/File:Coral_patterns_closer_(6163706598).jpg


References III

Knauer, Christian and Andreas Spillner (2006). “Approximation Algorithms for the Minimum Convex Partition Problem”.
In: Scandinavian Workshop on Algorithm Theory. Springer, pp. 232–241. DOI: 10.1007/11785293_23.

Rader, Matthew T (2009). A Western Honey Bee on a Honeycomb. URL:
https://commons.wikimedia.org/wiki/File:Western_honey_bee_on_a_honeycomb.jpg.

Shamos, Michael Ian and Dan Hoey (1975). “Closest-Point Problems”. In: Foundations of Computer Science, 1975.,
16th Annual Symposium on. IEEE, pp. 151–162. DOI: 10.1109/SFCS.1975.8.

Yap, Chee-Keng (1987). “An O(n logn) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments”. In:
Discrete & Computational Geometry 2.4, pp. 365–393. DOI: 10.1007/BF02187890.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG 38

https://doi.org/10.1007/11785293_23
https://commons.wikimedia.org/wiki/File:Western_honey_bee_on_a_honeycomb.jpg
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1007/BF02187890

	Introduction
	Publications
	Computing Multiplicatively Weighted Voronoi Diagrams
	Computing Low-Cost Convex Partitions
	Generalized Weighted Voronoi Diagrams
	Recognition and Reconstruction of Weighted Bisector Graphs
	Generation of Spiral-Like Paths Within Planar Shapes

	References

	anm8: 
	8.10: 
	8.9: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm5: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm1: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 


