
GENERALIZED VORONOI DIAGRAMS
THEORY AND RELATED APPLICATIONS

Stefan de Lorenzo

Cumulative dissertation submitted to the Faculty of Natural
Sciences of the University of Salzburg in partial fulfillment
of the requirements for the doctoral degree Dr. techn.

Supervisor: Martin Held
Department of Computer Science
University of Salzburg

July 2021

Department of Computer Science
University of Salzburg
Jakob-Haringer-Straße 2
5020 Salzburg
Austria

Stefan de Lorenzo
Matriculation number: 00920908

Generalized Voronoi Diagrams: Theory and Related Applications

July 2021

ABSTRACT

The standard Voronoi diagram of points in the plane is one of the most prominent tools
in computational geometry and has been intensively studied in the past. It can be gen-
eralized in a wide variety of ways. A natural extension is to associate multiplicative
weights with the individual input points. In this scenario, the extent of a Voronoi re-
gion does not only depend on the location of the respective site, but is also influenced
by the corresponding weight. In this cumulative dissertation, an efficient practice-
minded strategy for computing the multiplicatively weighted Voronoi diagram (MWVD)
of points is presented. Additionally, we will take a look at the recognition and recon-
struction of weighted bisector graphs.

Another way to generalize the Voronoi diagram is to extend the range of permissible
input sites. We will utilize the Voronoi diagram of straight-line segments and circu-
lar arcs, to generate tool paths inside planar shapes for NC machining. Of course,
these generalizations can also be combined. The generalized weighted Voronoi diagram
(GWVD) even allows the endpoints of one of its input straight-line segment to be as-
sociated with different multiplicative weights. We present an in-depth analysis of
the GWVD and introduce an alternative structure that we will refer to as the variable-
radius skeleton (VRS) inside a polygon. Both the GWVD as well as the VRS can be used
to generate so-called variable-radius offsets.

Additionally, we take a close look at convex decompositions of points sets. In particular,
several heuristics are presented that allow us to reduce the face count of an initial
convex decomposition.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Professor
Martin Held for his invaluable guidance, motivation, and patience. Furthermore, I
want to thank my colleagues Günther Eder and Peter Palfrader who always had time
for insightful discussions.

I am extremely grateful to my parents, Angelika and Herbert, and the rest of my family
for supporting me spiritually throughout my studies. My special thanks goes to my
girlfriend Sabrina for her continuous support and understanding.

This work has been supported by the Austrian Science Fund (FWF) under the grant
number P31013-N31.

CONTENTS

I INTRODUCTION . 1

1 Preliminaries . 3
1.1 Voronoi Diagrams . 3

1.1.1 The Voronoi Diagram of Points . 3
1.1.2 The Medial Axis . 6
1.1.3 Weighted Voronoi Diagrams . 6
1.1.4 Anisotropic Voronoi diagrams . 9
1.1.5 Generalized Weighted Voronoi diagrams 9
1.1.6 Applications . 10

1.2 Straight Skeletons . 11
1.2.1 Weighted Straight Skeletons . 12
1.2.2 Applications . 12

1.3 Convex Partitions . 13

2 Contribution . 15
2.1 Generation of Spiral-Like Paths within Planar Shapes 15
2.2 Computing Low-Cost Convex Partitions 16
2.3 Efficient Multiplicatively Weighted Voronoi Diagrams 17
2.4 Weighted Skeletal Structures for Variable-Radius Offsets 18
2.5 Recognition and Reconstruction of Weighted Voronoi Diagrams 19

Bibliography . 21

II PUBLICATIONS . 29

Generation of Spiral-Like Paths within Planar Shapes 31

Computing Low-Cost Convex Partitions . 43

Efficient Multiplicatively Weighted Voronoi Diagrams 57

Weighted Skeletal Structures for Variable-Radius Offsets 75

Recognition and Reconstruction of Weighted Voronoi Diagrams 93

I
INTRODUCTION

1
PRELIMINARIES

Geometric structures and algorithms are omnipresent in our modern world. Amongst
many things, they are used in computer graphics, industrial NC machining, urban
planning, and the modeling of crystal growth [ZL02; Hel91; Oka+08; SD91].

In Chapter 1 we will take a look at some of the fundamental geometric structures that
this cumulative dissertation is based on. In particular, Section 1.1 gives an overview of
the Voronoi diagram with a particular emphasis on the medial axis as well as weighted
Voronoi diagrams. A structure that is closely related to the Voronoi diagram is the
straight skeleton; see Section 1.2. Additionally, Section 1.3 is dedicated to convex decom-
positions and their computation.

Chapter 2 summarizes the contributions of this cumulative dissertation. Note that the
main parts of this dissertation have already been published or have been submitted
to peer-reviewed journals and workshops. The corresponding papers can be found in
Part II.

1.1 VORONOI DIAGRAMS

1.1.1 THE VORONOI DIAGRAM OF POINTS

The standard Voronoi diagram VD(S) of a set S of n points in the plane that we will
refer to as sites is a versatile tool in computational geometry; see Figure 1. It consists
of several so-called Voronoi regions. Every Voronoi region VR(s, S) is associated with
a site s ∈ S and contains all points in R2 that are closest to s under the Euclidean
distance metric. More formally,

VR(s, S) := {p ∈ R2 : d(s, p) ≤ d(s, S)},

CHAPTER 1. PRELIMINARIES

FIGURE 1: The Voronoi diagram (shown in black) of a set of input points (highlighted
in green) as well as the corresponding Delaunay triangulation (shown in orange).

where d(·, ·) denotes the standard Euclidean distance. The boundary of a Voronoi re-
gion is commonly referred to as a Voronoi cell. The combinatorial complexity of VD(S),
that is, the number of its vertices, edges, and faces, is bounded by O(n). Additionally,
every Voronoi region VR(s, S) is convex, i.e., if the two points p and q are situated
inside VR(s, S), then the straight-line segment pq also lies entirely within VR(s, S).
Furthermore, a bisector between two sites s1, s2 ∈ S is the set of all points in the plane
that are equidistant to s1 and s2.

The earliest mention of a structure that resembles the Voronoi diagram dates back to
the 17th century. In his book that is titled Principles of Philosophy [Des44], Descartes
outlines his vortex theory of planetary motion that attempts to model the orbits of
planets and other astronomical objects. These vortices form a subdivision of space in
which each vortex is associated with a single star; see Figure 2.

Over two centuries passed until the Voronoi diagram was first explicitly formalized by
the mathematicians Dirichlet [Dir50] and Voronoi [Vor08]. Later on, it was rediscov-
ered in several scientific fields, e.g., by Thiessen [Thi11] to determine the mean areal
precipitation of specific catchment areas. Thus, Voronoi diagrams are also sometimes
referred to as Dirichlet tessellations or Thiessen polygons.

Several strategies are known that allow us to compute VD(S) in worst-case optimal
O(n log n) time andO(n) space. The first strategy that achieved worst-case optimality
is a divide-and-conquer algorithm which is presented by Shamos and Hoey [SH75].
Fortune’s famous approach [For87] uses a so-called sweepline that moves upwards
across the plane to construct VD(S). This algorithm was later generalized to a class of
nice metrics by Dehne and Klein [DK97]. Amongst other things, nice metrics include
all convex distance functions.

4

1.1. VORONOI DIAGRAMS

FIGURE 2: A subdivision of space into several vortices as it appears in Descartes’
work [Des44].

Randomized geometric strategies are usually simpler compared to their deterministic
counterparts, although their theoretical analysis tends to be more involved. In their
pioneering work, Clarkson and Shor [CS89] introduce an abstract framework for es-
tablishing average-case bounds of randomized algorithms. Chew [Che90] outlines a
simple strategy that allows to compute the Voronoi diagram of a set of points that are
in convex position in linear expected time. Guibas et al. [GKS90] present an approach
that uses incremental construction to generate VD(S) in expectedO(n log n) time and
O(n) space.

Additionally, it is possible to derive the so-called Delaunay triangulation DT (S) of S
in linear time from the corresponding Voronoi diagram VD(S). All sites that are
neighbors in VD(S) are connected via a triangulation edge. Thus, DT (S) is called
the straight-line dual of VD(S). An advantageous property of the Delaunay trian-
gulation is that it maximizes the minimum angle inside a triangle over all possible
triangulations.

A vast number of geometric problems can be solved efficiently if the corresponding
Voronoi diagram has already been computed. Amongst other things, it is possible to
find the closest pair of points in S or compute the Euclidean minimum spanning tree
(EMST) of S, i.e., the planar straight-line graph (PSLG) on S that is connected and has
minimum total edge length, in linear time if VD(S) is known. A more exhaustive list
of problems is given by Aurenhammer and Klein [AK00].

5

CHAPTER 1. PRELIMINARIES

1.1.2 THE MEDIAL AXIS

The Voronoi diagram of points can be easily generalized to other types of inputs sites.
We refer to Held and Huber [HH09] for a definition of the Voronoi diagram of straight-
line segments and circular arcs. Blum [Blu67] was the first to introduce the medial
axis transform inside a planar shape; see Figure 3. Since then many researchers have
worked on finding efficient ways for computing the medial axis. Lee [Lee82] presents
a divide-and-conquer algorithm that is able to generate the medial axis inside a sim-
ple polygon with n edges in O(n log n) time and provides a corresponding practical
implementation.

FIGURE 3: The medial axis (highlighted in black) inside a planar shape.

Inside a planar region that is bounded by a set S of straight-line segments and circu-
lar arcs, the medial axisMA(S) is a subset of the Voronoi diagram VD(S). Therefore,
MA(S) can be derived from VD(S) in linear time. Yap [Yap87] presents anO(n log n)
time algorithm for computing the Voronoi diagram of n straight-line segments and cir-
cular arcs. Held and Huber [HH09] present an efficient algorithm that is able to com-
pute Voronoi diagrams of points, straight-line segments, and circular arcs in expected
O(n log n) time. Its implementation is based on standard double-precision floating-
point arithmetic.

1.1.3 WEIGHTED VORONOI DIAGRAMS

Another natural extension of this idea is to associate additive or multiplicative weights
with the individual sites. These weighted Voronoi diagrams were first introduced by
Boots [Boo80] in terms of market area analysis. The additively weighted Voronoi dia-
gram (AWVD) has a linear combinatorial complexity overall and can be computed in
worst-case optimalO(n log n) time andO(n) space, e.g., by using Fortune’s sweepline
approach [For87]. Aurenhammer [Aur87] presents the power diagram (PD) which can
be seen as an AWVD in the power distance; see Figure 4. It subdivides the plane into
several convex regions.

6

1.1. VORONOI DIAGRAMS

(A) (B)

FIGURE 4: An AWVD is shown in (A). Additionally, (B) shows the corresponding PD
for the same site locations and weights. Note that the magnitude of the individual
weights is indicated by the radius of the disks that are centered at the respective site

locations.

Things change drastically when dealing with the multiplicatively weighted Voronoi
diagram (MWVD), as its Voronoi regions may be disconnected. A face that does not
contain its generating site is usually referred to as an orphan [LS03]. Moreover, every
such Voronoi region may consist of up to linearly many orphans. Thus, the combina-
torial complexity of the MWVD of a set of n sites is bounded by O(n2); see Figure 5.

40

40

40
4021 1815 10

FIGURE 5: A worst-case example of a MWVD with 8 sites [AE84]. Note that the
respective weights are written next to the site locations.

The bisector between two (multiplicatively weighted) sites s1 and s2, with w(s1) 6=
w(s2), is a circle. Recall that Apollonius of Perga defined a circle as a set of points that
have a fixed distance ratio to two foci. Table 1 summarizes the underlying distance
functions for different weighted Voronoi diagrams.

AWVD MWVD PD

Distance function d(p, s)− w(s)
d(p, s)
w(s)

d(p, s)2 − w(s)2

TABLE 1: The distance functions that are associated with AWVDs, MWVDs, and PDs,
where p is a point in R2 and s ∈ S is associated with the real-valued weight w(s) in

which w(s) > 0 for MWVDs and w(s) ≥ 0 for AWVDs as well as PDs.

7

CHAPTER 1. PRELIMINARIES

Aurenhammer and Edelsbrunner [AE84] present an algorithm for constructing the
MWVD of a set S of n input points in R2 in optimalO(n2) time and space. They trans-
form the construction of the MWVD VDw(S) in the plane into a three-dimensional
problem in which all sites in S are situated in the xy-plane. Every bisector between
two sites is associated with a sphere in R3. All of these spheres share a common point.
The closed interior of every sphere is then mapped to a three-dimensional closed half-
space using a geometric technique called inversion; see [Bro79]. Inversion is involu-
tory, that is, applying inversion twice yields the original point. Every Voronoi region
is mapped to a polyhedron in R3. Therefore, VDw(S) is mapped to the intersection
of the partition, that is induced by the polyhedra that are associated with the sites in
S, with the sphere that corresponds to the xy-plane. Finally, VDw(S) is generated by
inverting this intersection.

Har-Peled and Raichel [HR15] show that the expected complexity of the MWVD equals
O(n log2 n) if all weights are chosen randomly. They use a so-called overlay arrange-
ment OA(S) of S that is generated by incrementally constructing the standard (un-
weighted) Voronoi diagram, in which the sites are inserted ordered by their decreasing
weight, without throwing away edges that are situated inside newly inserted Voronoi
regions; see Figure 6.

23
22

21

20

19

16

14

13

10

7

(A) (B)

FIGURE 6: In (A) a MWVD is illustrated in which the corresponding weights are
written next to the site locations. Furthermore, (B) shows the respective overlay ar-

rangement.

Furthermore, every point p ∈ R2 is associated with a candidate set that includes all
sites of S whose Voronoi region may potentially include p. Kaplan et al. [KRS11]
show that the expected complexity of OA(S) is bounded by O(n log n). Additionally,
the candidate set inside every face of OA(S) is fixed and its size is O(log n), with
high probability. They also sketch a corresponding construction strategy that runs in
expectedO(n log3 n) time and uses the algorithm of Aurenhammer and Edelsbrunner
[AE84] as a subroutine.

8

1.1. VORONOI DIAGRAMS

1.1.4 ANISOTROPIC VORONOI DIAGRAMS

Labelle and Shewchuk [LS03] introduce the anisotropic Voronoi diagram to generate
anisotropic triangular meshes. Additionally, they sketch an incremental construction
strategy that allows computing loose anisotropic Voronoi diagrams that potentially
include fewer orphans than the corresponding anisotropic Voronoi diagram. The mul-
tiplicatively weighted crystal-growth Voronoi diagram (CGVD), whose Voronoi regions are
orphan-free, is introduced by Schaudt and Drysdale [SD91]. In this setup, the dis-
tance between a site and a point in its Voronoi region equals the length of the shortest
path that is completely situated in the respective Voronoi region. They also present a
corresponding strategy that computes an approximation of the CGVD in O(n3) time.

1.1.5 GENERALIZED WEIGHTED VORONOI DIAGRAMS

Held et al. [HHP16] use the generalized weighted Voronoi diagram (GWVD) of a set S
of sites, that consists of points and straight-line segments, to generate variable-radius
offsets; see Figure 7. These variable-radius offsets are exclusively formed by straight-
line segments and circular arcs.

FIGURE 7: The GWVD inside a polygon that was generated by Held et al. [HHP16].

Every point site s ∈ S is associated with a weight w(s). If pq is an input straight-line
segment, then the weight changes linearly from w(p) to w(q) along pq. The Voronoi
regions of the GWVD are not necessarily connected. Its edges are either formed by
conic sections or semi-algebraic sets. Additionally, the set of permissible input sites
can be extended to circular arcs.

9

CHAPTER 1. PRELIMINARIES

1.1.6 APPLICATIONS

The Voronoi diagram is widely used in practice. Meguerdichian et al. [Meg+01] em-
ploy Voronoi diagrams to solve the coverage problem for sensor networks. In partic-
ular, they use it to identify the maximum breach and maximum support paths, that
is, the paths inside the underlying field such that for any point along the respective
path the distance to the closest sensor is maximized or minimized, respectively. Held
and Palfrader [HP21] model coverage areas under the assumption that the individual
sites emit signals at distinct strengths. Additionally, these signals are allowed to vary
in different directions.

Okabe et al. [Oka+08] present generalized network Voronoi diagrams of points, straight-
line segments, and polygons. This structure is used to model the shortest distances
between specific places in an urban environment. By adding weights, the network
Voronoi diagram can be generalized even further. From a practical point of view, this
is important for applications, where the distance to a certain location is not the only
relevant factor.

An interesting application of the medial axis is to generate tool paths for high-speed
machining (HSM). In this context a pocket is the area along a workpiece in which mate-
rial should be removed. In contrast to conventional pocket machining1, optimizing the
length of the tool path is no longer as important when it comes to generating HSM tool
paths, other factors such as the maximum cutter engagement angle or the smoothness
of the tool path are becoming more focused.

Elber et at. [ECD05] use the medial axis inside a pocket to generate C1-continuous
HSM tool paths. Additionally, Held and Spielberger [HS09] derive a series of wave-
fronts from the medial axis. Afterwards, they interpolate between neighboring wave-
fronts and insert smoothing arcs to generate a G1-continuous tool path. They are even
able to achieve C2 continuity by approximating their tool paths by curves that consist
of uniform cubic B-splines [HH08]. Later on, they extended their strategy to be able to
handle pockets with islands, i.e., parts inside the pocket that should not be machined
[HS14]. Common to these tool path generation strategies is the requirement that a
user-supplied step-over value, i.e., a maximum distance between two successive cutter
passes, must be respected.

Additionally, the Voronoi diagram finds applications in city planning [Huf73; Kaz+17].
It is also frequently employed for automated land partitioning [DSS13]. In this sce-
nario, it is desirable to reduce the fragmentation of the individual plots of land as
much as possible.

1Note that Held [Hel91] provides an in-depth discussion of this topic.

10

1.2. STRAIGHT SKELETONS

1.2 STRAIGHT SKELETONS

Peschka [Pes77] was the first to mention straight skeletons; see Figure 8. Over a cen-
tury passed until they were rediscovered and formalized by Aichholzer et al. [Aic+95].
The straight skeleton has a linear combinatorial complexity. Unlike the Voronoi dia-
gram, which can be defined based on an explicit distance function, the straight skele-
ton can only be defined procedurally.

The arcs of the straight skeleton inside a polygon P are traced out by the vertices of
a shrinking wavefront that covers an increasing portion of the interior of P as time
progresses. Initially, the wavefront coincides with P. Every edge of P generates one
wavefront edge. All of these wavefront edges move inwards at unit speed. Two dif-
ferent event types indicate topological changes of the wavefront. An edge event occurs
whenever a wavefront edge disappears. Additionally, a split event takes place if a re-
flex wavefront vertex crashes into a wavefront edge. The straight skeleton has some
obvious similarities to the medial axis inside a polygon. The major difference between
the two structures is that the straight skeleton consists exclusively of straight-line seg-
ments, whereas the medial axis may incorporate parabolic arcs. Note that this concept
can also be extended to PSLGs.

Aichholzer and Aurenhammer [AA96] present a triangulation-based algorithm to com-
pute the straight skeleton of a PSLG in O(n3 log n) time and O(n) space, although for
most practical inputs this bound turns out to be far too pessimistic. Additionally, they
show that every face of the straight skeleton of a PSLG is a monotone polygon.

FIGURE 8: The straight skeleton inside a polygon as well as a series of wavefronts
that are highlighted in blue. This straight skeleton was generated using the SURFER2

package [EHP20].

11

CHAPTER 1. PRELIMINARIES

1.2.1 WEIGHTED STRAIGHT SKELETONS

The straight skeleton can be generalized by assigning additive or multiplicative weights
with the input edges. In case of additive weights, the individual wavefront edges may
start at different points in time. If multiplicative weights are associated with the input
edges, then the wavefront edges are allowed to move at different speeds.

Biedl et al. [Bie+15a] show that the additively weighted straight skeleton can be com-
puted inO(n log n) time inside a monotone polygon. Additionally, Eder et al. [EHP20]
provide an implementation of this strategy as well as the algorithm by Aichholzer and
Aurenhammer [AA96] that is based on exact arithmetic using the Computational Ge-
ometry Algorithms Library (CGAL) [CGA21]. They also offer an in-depth discussion
of the challenges that they faced as well as a thorough experimental evaluation.

Eppstein and Erickson [EE99] were the first to present an algorithm for computing
straight skeletons inside a polygon that achieves a sub-quadratic runtime. In partic-
ular, their strategy takes O(n17/11+ε) time and space, for any fixed ε > 0. Addition-
ally, their approach can also be used for generating multiplicatively weighted straight
skeletons in O(n8/5+ε) time and space. They introduce the so-called motorcycle graph
to speed up the computation of split events. A detailed analysis of the properties of
weighted straight skeletons is given by Bield et al. [Bie+15b].

1.2.2 APPLICATIONS

Straight skeletons are employed for generating three-dimensional roof and terrain
models. Held and Palfrader [HP17] derive different types of roofs from weighted
straight skeletons inside polygons. Every point p inside the respective polygon P is
lifted to R3 by assigning an additional z-coordinate to it that equals the time at which
the wavefront reaches p. These roofs have the property that they do not include local
minima. Hence, rain that hits the surface of such a roof is guaranteed to drain towards
the boundary of P.

Interestingly enough, straight skeletons can also be used in the field of mathematical
origami [DDL98]. In particular, they are used to find solutions of the fold-and-cut prob-
lem that can be summarized as follows: Imagine a polygon P that is drawn on a sheet
of paper. We are now allowed to perform a series of foldings. Finally, we want to be
able to take a pair of scissors and perform a single straight cut to produce the shape
that is outlined by P. The respective crease patterns can be derived from the straight
skeleton.

So-called mitered offsets find applications in NC machining. Park and Chung [PC03]

12

1.3. CONVEX PARTITIONS

argue that rounded offset curves, that are derived from Voronoi diagrams, are not well-
suited for profile machining. In this specific scenario, it is especially important to
avoid erosion at the reflex nodes of the respective pocket. Mitered offsets reduce
the time that the tool is in contact with these reflex nodes significantly compared to
rounded offsets. Palfrader and Held [PH15] describe how mitered offsets can be gen-
erated efficiently using straight skeletons.

Haunert and Sester [HS08] utilize straight skeletons in terms of cartography. When
scaling down topographic databases, it is usually necessary to eliminate certain fea-
tures and divide up their area among their neighbors. Straight skeletons are well-
suited to implement such a collapse operation as they preserve topological relationships.

1.3 CONVEX PARTITIONS

Oftentimes, a problem that seems simple at first glance turns out to computationally
costly in the end. But what does it even mean for a problem to be hard? A way to
determine the hardness of a decision problem2, i.e., a problem in which the output for
all of its instances is either yes or no, is to associate it with a so-called problem class.
Two of the most prominent examples of such problem classes are P and NP . The
problem class P contains all decision problems that are solvable in polynomial time
by a deterministic algorithm. If a decision problem is solvable by a non-deterministic
algorithm in polynomial time, then it is in NP . Naively spoken, NP includes all de-
cision problems for which it is easy to verify a proposed solution, but potentially hard
to find a valid solution. One of the most famous problems in modern mathematics is
to prove or disprove whether P = NP . In fact, it has even earned a spot among the
Millennium Prize Problems [CJW06]. Additionally, a problem is said to be NP-hard if
it is at least as hard as any problem inNP . Unless P = NP , our best chance for deal-
ing with an optimization problem that isNP-hard sufficiently fast is to find a suitable
approximation scheme.

This section focuses on the MINIMUM CONVEX PARTITION (MCP) problem in which
we are given a set S of n points and want to compute a plane graph with vertex set S,
with each point in S having positive degree, that partitions the convex hull of S into
the smallest possible number of convex faces; see Figure 9. Although the hardness
of MCP is unknown for points in general position, i.e., where no three points are
collinear, Grelier [Gre20] announced that if we allow three points to lie on the same
line, then MCP is NP-hard. If the points in S are assumed to be in general position,
then Knauer and Spillner [KS06] provide a 3-approximation that runs in O(n log n)
time. They also propose an algorithm that improves the approximation factor to 30/11

2Note that we can transform any optimization problem into a decision problem.

13

CHAPTER 1. PRELIMINARIES

and takesO(n2) time. Whenever the points of S are situated on h nested convex hulls,
MCP can be solved exactly in O(n3h+3) time [FMR01].

FIGURE 9: A solution of the MCP problem for an input set with 15 points.

A problem that is related to MCP is the decomposition of a simple polygon P, with
n nodes, into convex pieces. If P includes holes, then Lingas [Lin82] shows that this
problem is NP-hard.

Otherwise, polynomial-time algorithms exist. Chazelle and Dobkin [CD79] present an
algorithm that runs inO(n6) time if Steiner points are allowed to be added. In his PhD
thesis, Chazelle [Cha80] introduces a strategy that is based on dynamic programming
and solves the problem in O(n + r3) time, where r is the number of reflex nodes of P.
If no Steiner points are allowed to be inserted, then Keil and Snoeyink [KS02] present
an algorithm that generates minimum convex decompositions of simple polygons in
O(n + min{nr2, r4}) time.

14

2
CONTRIBUTION

This chapter provides an overview of the main contributions of this work that are cu-
mulated in Part II. In Section 2.1 we take a look at a tool path generation algorithm that
utilizes the medial axis. Section 2.2 summarizes the strategy for generating convex de-
compositions and reducing their face count that is based on several heuristics. An ef-
ficient algorithm for computing the MWVD of points in R2 is discussed in Section 2.3.
Held et al. [HHP16] further generalize the MWVD of points, straight-line segments,
and circular arcs to generate variable-radius offsets. We build on their work and in-
troduce the variable-radius skeleton (VRS) inside a polygon; see Section 2.4. Finally, in
Section 2.5 a rundown of our results in respect to the recognition and reconstruction
of weighted bisector graphs and MWVDs of points is given.

2.1 GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

In On the Generation of Spiral-Like Paths Within Planar Shapes [HL18] (see Page 31), we
are given a planar shape P in R2 that is bounded by a set of straight-line segments and
circular arcs and want to compute a tool path that has the following properties:

(1) It starts inside of P, ends on the boundary of P, and is completely situated within
P.

(2) A user-specified step-over value ∆ > 0 is respected along the entire tool path.

(3) The tool path is free of self-intersections and consists exclusively of straight-line
segments.

This paper is based on prior work by Held and Spielberger [HS09; HS14]. The medial
axis MA(P) inside P forms the basis of our approach. By sampling MA(P) such
that ∆ is respected, a discretized version MA′′(P) of the medial axis is created that
is enhanced by a series of so-called clearance lines. Note that the medial axis forms
a tree inside P. Therefore, by choosing a vertex r of MA′′(P) as the root, MA′′(P)

CHAPTER 2. CONTRIBUTION

can be transformed into a rooted tree Tr which is called the discrete medial axis tree.
Afterwards, a series of uniformly distributed wavefronts is generated by sending an
impulse through Tr in which the Hausdorff distance between two successive wave-
fronts is bounded by ∆. Finally, we interpolate between consecutive wavefronts to
create a closed spiral path.

This strategy can be modified to generate double spirals, i.e., tool paths that start and
end along the boundary of P. Sometimes it is advantageous to subdivide P into sev-
eral regions and create a double spiral inside each of them. These double spirals can
then be linked such that a single composite spiral path is created. Additionally, the
POWERAPX package [HH08; HK14] can be utilized to derive C2-continuous tool paths
from our polygonal ones. These enhanced tool paths are well-suited for HSM.

2.2 COMPUTING LOW-COST CONVEX PARTITIONS

The goal of the 2020 Computational Geometry Challenge was to find solutions to the MCP
problem. Thus, several problem instances, i.e., sets of points in R2, were given. In our
corresponding publication Computing Low-Cost Convex Partitions for Planar Point Sets
Based on Tailored Decompositions [Ede+20] (see Page 43), we present different strate-
gies for computing initial decompositions as well as several heuristics that improve
upon them. At first, we worked on an implementation of the following simple idea:
The input point set S is triangulated and edges are removed as long as the respective
faces stay convex. Various heuristics are used to reduce the face count of these initial
decompositions which can be summarized as follows:

• A face of the decomposition as well as a random number of its neighbors is se-
lected. This set of faces is called a hole. Afterwards, the initial triangulation edges
inside this hole are restored and, again, dropped randomly. If the newly gener-
ated decomposition has fewer faces than the old one, then we keep it.

• Random edge flips are performed before we start to remove edges.

• We load previously computed decompositions to work on them again.

• The individual decompositions are subdivided into several non-overlapping re-
gions that can then be improved in parallel.

• We select high-degree vertices of decompositions and rotate edges away from
them. As a consequence, certain edges may become unnecessary; see Figure 10.

Additionally, a significant portion of the underlying problem instances contained a
high number of collinear points that are situated on vertical or horizontal lines. Thus,
for these specific inputs, we generate custom-made initial decompositions. More pre-
cisely, we connect points that share a common x-coordinate ordered by increasing
y-coordinate. Subsequently, the top and bottom bounding chains of S are created and

16

2.3. EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

v

uu1

u0

v

uu1

u0

FIGURE 10: The green edge is flipped away from v. Therefore, the red edge becomes
unnecessary.

the area between these chains as well as the convex hull of S is triangulated. We pro-
ceed similarly for points that share a common y-coordinate.

2.3 EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

In An Efficient, Practical Algorithm and Implementation for Computing Multiplicatively
Weighted Voronoi Diagrams [HL20] (see Page 57), we use a practice-minded wavefront-
based approach to generate the MWVD of a set S of n weighted points. The wavefront
WF (S, t) of S at time t ≥ 0 includes all points in R2 that are in minimal weighted
distance t to S. It consists of so-called wavefront arcs as well as the common endpoints
of two wavefront arcs that we will refer to as a wavefront vertices. Additionally, each
input site si ∈ S is associated with an offset circle ci(t) at time t ≥ 0 that is defined as

ci(t) := {p ∈ R2 : dw(p, si) = t},

with

dw(p, si) :=
d(p, si)

w(si)
,

where w(si) > 0 is the weight that is associated with si. Throughout the wavefront
propagation, we identify and eliminate arcs which are situated along these offset cir-
cles that are inactive, i.e., arcs that will not contribute to the wavefront at any future
point in time. Thus, it is only necessary to keep track of the active arcs; see Figure 11.
Note that an active arc does not necessarily coincide with a wavefront arc. Collision,
domination, and arc events mark topological changes of the arrangement of active
arcs. One may prove that at most O(n2) many events may take place in the worst
case. Additionally, each event can be handled in O(log n) time. Therefore, our basic
event-based strategy is able to generate the MWVD of S in worst-caseO(n2 log n) time
and O(n2) space.

Our experiments quickly indicated that the quadratic bound on the number of colli-
sion and domination events is far too pessimistic in practice. Thus, we make use of

17

CHAPTER 2. CONTRIBUTION

FIGURE 11: A snapshot of the wavefront propagation at time t in which the wave-
front WF (S, t) is highlighted in blue and active arcs that are not part of WF (S, t)

are shown in orange.

an overlay arrangement to improve our basic algorithm. This enhanced strategy com-
putes the MWVD in expected O(n log4 n) time and O(n log3 n) space. We also have
implemented this algorithm based on exact arithmetic using CGAL. Our approach can
be generalized to a set of disjoint straight-line segments in the plane. Additionally, the
basic strategy can be extended to handle additive and multiplicative weights simulta-
neously by giving sites that are associated with an additive weight a head start.

2.4 WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

Held et al. [HHP16] present the generalized weighted Voronoi diagram (GWVD) to gen-
erate variable-radius offsets. In contrast to conventional constant-radius offsetting,
variable-radius offsetting allows for different parts of the input to shrink (or expand)
non-uniformly at different speeds. In our work Weighted Skeletal Structures for Com-
puting Variable-Radius Offsets [HL21] (see Page 75), we present a wavefront-based al-
gorithm for computing the GWVD of a set of points and straight-line segments in
O(n3 log n) time and O(n3) space. A possible drawback of the GWVD is that its re-
gions are potentially disconnected even within a polygon. Thus, we present an alter-
native structure inside a polygon whose regions stay connected in any case. We call it
the variable-radius skeleton (VRS); see Figure 12.

Two slightly different kinds of of variable-radius offsets can be derived from the GWVD
as well as the VRS. Like the straight skeleton, the VRS is defined procedurally based
on several event types. We provide a wavefront-based strategy for computing the
VRS that runs in cubic time. There are several possible applications of the VRS such

18

2.5. RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

FIGURE 12: A VRS inside a polygon as well as a series of uniformly distributed
variable-radius offsets.

as brush-stroke modeling or the creation of ornamental seams. Furthermore, it is pos-
sible to derive so-called variable-radius roofs from the VRS that are guaranteed to drain
water, that is, they do no include local minima; see Figure 13.

FIGURE 13: A variable-radius roof.

2.5 RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DI-
AGRAMS

We refer to a geometric graph as a weighted bisector graph if all of its faces are bounded
by arcs that are formed by parts of multiplicatively weighted bisectors between pairs

19

CHAPTER 2. CONTRIBUTION

of sites. A vast amount of literature deals with the computation of various types of
weighted bisector graphs; see Sections 1.1.3 and 1.2.1. The reverse problem is studied
in On the Recognition and Reconstruction of Weighted Voronoi Diagrams and Bisector Graphs
[Ede+21] (see Page 93). More precisely, we are given a planar circular-arc graph G, that
is, a planar geometric graph in which each edge is formed by a circular arc which
either forms a full circle or ends in a node that has a degree of at least three. Now,
we want to identify a solution set (S, σ), i.e., a set of points S in the plane together
with their corresponding weight function σ, such that G is a weighted bisector graph
induced by (S, σ) whenever such a solution exists.

Assume that m denotes the number of faces of G. If G consists exclusively of disjoint
nested circles and lines, then, by recursively applying circular inversion, it is possible
to determine (S, σ) in O(m log m) time such that G is the MWVD defined by (S, σ).

Whenever G contains nodes, we use the conjugated Möbius transform to derive sev-
eral solution circles from a node v. Every solution circle contains all possible locations
for a specific defining site of v. If the number of nodes along the boundary of a face
of G is greater than or equal to three, then we are able to obtain the respective sites by
intersecting the individual solution circles. Otherwise, families of local solutions are
generated that are combined using the procedure that we apply when dealing exclu-
sively with nested circles and lines.

We show that it can be determined in O(m) time whether a circular-arc graph G, that
is of regular degree three, is a bisector graph and, if so, find a corresponding solution
(S, σ). Clearly, if G is indeed a bisector graph, then the strategy by Aurenhammer and
Edelsbrunner [AE84] can be utilized to decide whether G is also a MWVD.

20

BIBLIOGRAPHY

[AA96] Oswin Aichholzer and Franz Aurenhammer. “Straight Skeletons for Gen-
eral Polygonal Figures in the Plane”. In: International Computing and Com-
binatorics Conference. Springer. 1996, pp. 117–126.
DOI: 10.1007/3-540-61332-3_144.

[AE84] Franz Aurenhammer and Herbert Edelsbrunner. “An Optimal Algorithm
for Constructing the Weighted Voronoi Diagram in the Plane”. In: Pattern
Recognition 17.2 (1984), pp. 251–257.
DOI: 10.1016/0031-3203(84)90064-5.

[Aic+95] Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärt-
ner. “A Novel Type of Skeleton for Polygons”. In: Journal of Universal Com-
puter Science. Springer, 1995, pp. 752–761.
DOI: 10.1007/978-3-642-80350-5_65.

[AK00] Franz Aurenhammer and Rolf Klein. Voronoi Diagrams. Vol. 5. Elsevier,
2000.

[Aur87] Franz Aurenhammer. “Power Diagrams: Properties, Algorithms and Ap-
plications”. In: SIAM Journal on Computing 16.1 (1987), pp. 78–96.
DOI: 10.1137/0216006.

[Bie+15a] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Pal-
frader. “A Simple Algorithm for Computing Positively Weighted Straight
Skeletons of Monotone Polygons”. In: Information Processing Letters 115.2
(Feb. 2015), pp. 243–247.
DOI: 10.1016/j.ipl.2014.09.021.

[Bie+15b] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Pal-
frader. “Weighted Straight Skeletons in the Plane”. In: Computational Ge-
ometry: Theory and Applications 48.2 (Feb. 2015), pp. 120–133.
DOI: 10.1016/j.comgeo.2014.08.006.

[Blu67] Harry Blum. “A Transformation for Extracting New Descriptors of Shape”.
In: Models for the Perception of Speech and Visual Form 4 (1967), pp. 362–380.

https://doi.org/10.1007/3-540-61332-3_144
https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1007/978-3-642-80350-5_65
https://doi.org/10.1137/0216006
https://doi.org/10.1016/j.ipl.2014.09.021
https://doi.org/10.1016/j.comgeo.2014.08.006

BIBLIOGRAPHY

[Boo80] Barry N Boots. “Weighting Thiessen Polygons”. In: Economic Geography
56.3 (1980), pp. 248–259.
DOI: 10.2307/142716.

[Bro79] Kevin Q Brown. “Geometric Transforms for Fast Geometric Algorithms”.
PhD thesis. Carnegie Mellon University, 1979.

[CD79] Bernard Chazelle and David Dobkin. “Decomposing a Polygon into its
Convex Parts”. In: Proceedings of the 11th Annual ACM Symposium on Theory
of Computing (STOC 1979). Apr. 1979, pp. 38–48.
DOI: 10.1145/800135.804396.

[CGA21] CGAL Project. CGAL User and Reference Manual. 5.2.1. CGAL Editorial
Board, 2021.
URL: https://doc.cgal.org/5.2.1/Manual/packages.html.

[Cha80] Bernard M Chazelle. “Computational Geometry and Convexity”. PhD the-
sis. Yale University, 1980.

[Che90] L Paul Chew. Building Voronoi Diagrams for Convex Polygons in Linear Ex-
pected Time. Tech. rep. Dartmouth College Hanover, NH, USA, 1990.

[CJW06] James A Carlson, Arthur Jaffe, and Andrew Wiles. The Millennium Prize
Problems. American Mathematical Society, 2006. ISBN: 978-0821836798.

[CS89] Kenneth L Clarkson and Peter W Shor. “Applications of Random Sam-
pling in Computational Geometry, II”. In: Discrete & Computational Geome-
try 4.5 (1989), pp. 387–421.
DOI: 10.1007/BF02187740.

[DDL98] Erik D Demaine, Martin L Demaine, and Anna Lubiw. “Folding and Cut-
ting Paper”. In: Proceedings of the Japanese Conference on Discrete and Com-
putational Geometry (JCDCG 1998). Springer. 1998, pp. 104–118.
DOI: 10.1007/978-3-540-46515-7_9.

[Des44] René Descartes. Principia Philosophiae. Ludovicus Elzevirius, 1644.

[Dir50] G Lejeune Dirichlet. “Über die Reduction der Positiven Quadratischen
Formen mit Drei Unbestimmten Ganzen Zahlen.” In: Journal für die reine
und angewandte Mathematik (Crelles Journal) 40 (1850), pp. 209–227.
DOI: 10.1515/crll.1850.40.209.

[DK97] Frank Dehne and Rolf Klein. ““The Big Sweep” : On the Power of the
Wavefront Approach to Voronoi Diagrams”. In: Algorithmica 17.1 (1997),
pp. 19–32.
DOI: 10.1007/BF02523236.

22

https://doi.org/10.2307/142716
https://doi.org/10.1145/800135.804396
https://doc.cgal.org/5.2.1/Manual/packages.html
https://doi.org/10.1007/BF02187740
https://doi.org/10.1007/978-3-540-46515-7_9
https://doi.org/10.1515/crll.1850.40.209
https://doi.org/10.1007/BF02523236

BIBLIOGRAPHY

[DSS13] Demetris Demetriou, Linda See, and John Stillwell. “A Spatial Genetic Al-
gorithm for Automating Land Partitioning”. In: International Journal of Ge-
ographical Information Science 27.12 (2013), pp. 2391–2409.
DOI: 10.1080/13658816.2013.819977.

[ECD05] Gershon Elber, Elaine Cohen, and Sam Drake. “MATHSM: Medial Axis
Transform Toward High Speed Machining of Pockets”. In: Computer-Aided
Design 37.2 (2005), pp. 241–250.
DOI: 10.1016/j.cad.2004.05.008.

[Ede+20] Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader. “Com-
puting Low-Cost Convex Partitions for Planar Point Sets Based on Tai-
lored Decompositions”. In: Proceedings of the 36th International Symposium
on Computational Geometry (SoCG 2020). Vol. 164. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Zürich, Switzerland: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, June 2020, 85:1–85:10. ISBN: 978-3-95977-
143-6.
DOI: 10.4230/LIPIcs.SoCG.2020.85.

[Ede+21] Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader. “On
the Recognition and Reconstruction of Weighted Voronoi Diagrams and
Bisector Graphs”. Submitted to Computational Geometry: Theory and Appli-
cations. Feb. 2021.

[EE99] David Eppstein and Jeff Erickson. “Raising Roofs, Crashing Cycles, and
Playing Pool: Applications of a Data Structure for Finding Pairwise Inter-
actions”. In: Discrete & Computational Geometry 22.4 (1999), pp. 569–592.
DOI: 10.1007/PL00009479.

[EHP20] Günther Eder, Martin Held, and Peter Palfrader. “On Implementing Straight
Skeletons: Challenges and Experiences”. In: Proceedings of the 36th Interna-
tional Symposium on Computational Geometry (SoCG 2020). Vol. 164. LIPIcs.
Zürich, Switzerland: Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
June 2020, 38:1–38:16. ISBN: 978-3-95977-143-6.
DOI: 10.4230/LIPIcs.SoCG.2020.38.

[FMR01] Thomas Fevens, Henk Meijer, and David Rappaport. “Minimum Convex
Partition of a Constrained Point Set”. In: Discrete Applied Mathematics 109.1-
2 (2001), pp. 95–107.
DOI: 10.1016/S0166-218X(00)00237-7.

[For87] Steven Fortune. “A Sweepline Algorithm for Voronoi Diagrams”. In: Al-
gorithmica 2.1-4 (1987), p. 153.
DOI: 10.1007/BF01840357.

23

https://doi.org/10.1080/13658816.2013.819977
https://doi.org/10.1016/j.cad.2004.05.008
https://doi.org/10.4230/LIPIcs.SoCG.2020.85
https://doi.org/10.1007/PL00009479
https://doi.org/10.4230/LIPIcs.SoCG.2020.38
https://doi.org/10.1016/S0166-218X(00)00237-7
https://doi.org/10.1007/BF01840357

BIBLIOGRAPHY

[GKS90] Leonidas J Guibas, Donald E Knuth, and Micha Sharir. “Randomized In-
cremental Construction of Delaunay and Voronoi Diagrams”. In: Proceed-
ings of the 17th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 1990). Springer. 1990, pp. 414–431.
DOI: 10.1007/BF01758770.

[Gre20] Nicolas Grelier. Hardness and Approximation of Minimum Convex Partition.
2020.
arXiv: 1911.07697 [cs.CG].

[Hel91] Martin Held. On the Computational Geometry of Pocket Machining. Vol. 500.
Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg,
1991.
DOI: 10.1007/3-540-54103-9.

[HH08] Martin Heimlich and Martin Held. “Biarc Approximation, Simplification
and Smoothing of Polygonal Curves by Means of Voronoi-based Tolerance
Bands”. In: International Journal of Computational Geometry & Applications
18.03 (2008), pp. 221–250.
DOI: 10.1142/S0218195908002593.

[HH09] Martin Held and Stefan Huber. “Topology-Oriented Incremental Compu-
tation of Voronoi Diagrams of Circular Arcs and Straight-Line Segments”.
In: Computer-Aided Design 41.5 (2009), pp. 327–338.
DOI: 10.1016/j.cad.2008.08.004.

[HHP16] Martin Held, Stefan Huber, and Peter Palfrader. “Generalized Offsetting
of Planar Structures using Skeletons”. In: Computer-Aided Design and Ap-
plications 13.5 (2016), pp. 712–721.
DOI: 10.1080/16864360.2016.1150718.

[HK14] Martin Held and Dominik Kaaser. “C2 Approximation of Planar Curvi-
linear Profiles by Cubic B-Splines”. In: Computer-Aided Design and Applica-
tions 11.2 (2014), pp. 206–219.
DOI: 10.1080/16864360.2014.846092.

[HL18] Martin Held and Stefan de Lorenzo. “On the Generation of Spiral-Like
Paths Within Planar Shapes”. In: Journal of Computational Design and Engi-
neering 5.3 (July 2018), pp. 348–357.
DOI: 10.1016/j.jcde.2017.11.011.

[HL20] Martin Held and Stefan de Lorenzo. “An Efficient, Practical Algorithm
and Implementation for Computing Multiplicatively Weighted Voronoi

24

https://doi.org/10.1007/BF01758770
https://arxiv.org/abs/1911.07697
https://doi.org/10.1007/3-540-54103-9
https://doi.org/10.1142/S0218195908002593
https://doi.org/10.1016/j.cad.2008.08.004
https://doi.org/10.1080/16864360.2016.1150718
https://doi.org/10.1080/16864360.2014.846092
https://doi.org/10.1016/j.jcde.2017.11.011

BIBLIOGRAPHY

Diagrams”. In: Proceedings of the 28th Annual European Symposium on Al-
gorithms (ESA 2020). Vol. 173. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Aug. 2020, 56:1–56:15. ISBN: 978-3-95977-162-7.
DOI: 10.4230/LIPIcs.ESA.2020.56.

[HL21] Martin Held and Stefan de Lorenzo. “Weighted Skeletal Structures for
Computing Variable-Radius Offsets”. In: Computer-Aided Design and Ap-
plications 18.5 (Jan. 2021), pp. 875–889.
DOI: 10.14733/cadaps.2021.875-889.

[HP17] Martin Held and Peter Palfrader. “Straight Skeletons with Additive and
Multiplicative Weights and Their Application to the Algorithmic Gener-
ation of Roofs and Terrains”. In: Computer-Aided Design 92 (Nov. 2017),
pp. 33–41. ISSN: 0010-4485.
DOI: 10.1016/j.cad.2017.07.003.

[HP21] Martin Held and Peter Palfrader. “Modeling Coverage Areas of Anisotropic
Transmitters by Voronoi-Like Structures”. In: Proceedings of the 18th Computer-
Aided Design Conference (CAD 2021). Barcelona, Spain, July 2021, pp. 283–
287.
DOI: 10.14733/cadconfP.2021.283-287.

[HR15] Sariel Har-Peled and Benjamin Raichel. “On the Complexity of Randomly
Weighted Multiplicative Voronoi Diagrams”. In: Discrete & Computational
Geometry 53.3 (2015), pp. 547–568.
DOI: 10.1007/s00454-015-9675-0.

[HS08] Jan-Henrik Haunert and Monika Sester. “Area Collapse and Road Center-
lines based on Straight Skeletons”. In: GeoInformatica 12.2 (2008), pp. 169–
191.
DOI: 10.1007/s10707-007-0028-x.

[HS09] Martin Held and Christian Spielberger. “A Smooth Spiral Tool Path for
High Speed Machining of 2D Pockets”. In: Computer-Aided Design 41.7
(2009), pp. 539–550.
DOI: 10.1016/j.cad.2009.04.002.

[HS14] Martin Held and Christian Spielberger. “Improved Spiral High-Speed Ma-
chining of Multiply-Connected Pockets”. In: Computer-Aided Design and
Applications 11.3 (2014), pp. 346–357.
DOI: 10.1080/16864360.2014.863508.

[Huf73] David L Huff. “The Delineation of a National System of Planning Regions
on the Basis of Urban Spheres of Influence”. In: Regional Studies 7.3 (1973),
pp. 323–329.
DOI: 10.1080/09595237300185321.

25

https://doi.org/10.4230/LIPIcs.ESA.2020.56
https://doi.org/10.14733/cadaps.2021.875-889
https://doi.org/10.1016/j.cad.2017.07.003
https://doi.org/10.14733/cadconfP.2021.283-287
https://doi.org/10.1007/s00454-015-9675-0
https://doi.org/10.1007/s10707-007-0028-x
https://doi.org/10.1016/j.cad.2009.04.002
https://doi.org/10.1080/16864360.2014.863508
https://doi.org/10.1080/09595237300185321

BIBLIOGRAPHY

[Kaz+17] Ali Kazemzadeh-Zow, Saeed Zanganeh Shahraki, Luca Salvati, and Na-
jmeh N Samani. “A Spatial Zoning Approach to Calibrate and Validate
Urban Growth Models”. In: International Journal of Geographical Information
Science 31.4 (2017), pp. 763–782.
DOI: 10.1080/13658816.2016.1236927.

[KRS11] Haim Kaplan, Edgar Ramos, and Micha Sharir. “The Overlay of Mini-
mization Diagrams in a Randomized Incremental Construction”. In: Dis-
crete & Computational Geometry 45.3 (2011), pp. 371–382.
DOI: 10.1007/s00454-010-9324-6.

[KS02] Mark Keil and Jack Snoeyink. “On the Time Bound for Convex Decompo-
sition of Simple Polygons”. In: International Journal of Computational Geom-
etry & Applications 12.03 (2002), pp. 181–192.
DOI: 10.1142/S0218195902000803.

[KS06] Christian Knauer and Andreas Spillner. “Approximation Algorithms for
the Minimum Convex Partition Problem”. In: Proceedings of the 10th Scandi-
navian Workshop on Algorithm Theory (SWAT 2006). Springer. 2006, pp. 232–
241.
DOI: 10.1007/11785293_23.

[Lee82] Der-Tsai Lee. “Medial Axis Transformation of a Planar Shape”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 4 (1982), pp. 363–
369.
DOI: 10.1109/TPAMI.1982.4767267.

[Lin82] Andrzej Lingas. “The Power of Non-Rectilinear Holes”. In: Proceedings of
the 9th International Colloquium on Automata, Languages, and Programming
(ICALP 1982). Springer. 1982, pp. 369–383.
DOI: 10.1007/BFb0012784.

[LS03] Francois Labelle and Jonathan Richard Shewchuk. “Anisotropic Voronoi
Diagrams and Guaranteed-Quality Anisotropic Mesh Generation”. In: Pro-
ceedings of the 19th Annual Symposium on Computational Geometry (SoCG
2003). 2003, pp. 191–200.
DOI: 10.1145/777792.777822.

[Meg+01] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani
B Srivastava. “Coverage Problems in Wireless Ad-Hoc Sensor Networks”.
In: Proceedings 20th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (IEEE INFOCOM 2001). Vol. 3. IEEE. 2001, pp. 1380–
1387.
DOI: 10.1109/INFCOM.2001.916633.

26

https://doi.org/10.1080/13658816.2016.1236927
https://doi.org/10.1007/s00454-010-9324-6
https://doi.org/10.1142/S0218195902000803
https://doi.org/10.1007/11785293_23
https://doi.org/10.1109/TPAMI.1982.4767267
https://doi.org/10.1007/BFb0012784
https://doi.org/10.1145/777792.777822
https://doi.org/10.1109/INFCOM.2001.916633

BIBLIOGRAPHY

[Oka+08] Atsuyuki Okabe, Toshiaki Satoh, Takehiro Furuta, Atsuo Suzuki, and Kyoko
Okano. “Generalized Network Voronoi Diagrams: Concepts, Computa-
tional Methods, and Applications”. In: International Journal of Geographical
Information Science 22.9 (2008), pp. 965–994.
DOI: 10.1080/13658810701587891.

[PC03] Sang C Park and Yun C Chung. “Mitered Offset for Profile Machining”.
In: Computer-Aided Design 35.5 (2003), pp. 501–505.
DOI: 10.1016/S0010-4485(02)00065-9.

[Pes77] Gustav A V Peschka. Kotirte Ebenen (Kotirte Projektionen) und deren Anwen-
dung: Vorträge: zum Gebrauche für Ingenieure, für höhere Lehranstalten und
zum Selbststudium. Buschak & Irrgang, 1877.
DOI: 10.14463/GBV:865177619.

[PH15] Peter Palfrader and Martin Held. “Computing Mitered Offset Curves Based
on Straight Skeletons”. In: Computer-Aided Design and Applications 12.4 (2015),
pp. 414–424.
DOI: 10.1080/16864360.2014.997637.

[SD91] Barry F Schaudt and Robert L S Drysdale. “Multiplicatively Weighted
Crystal Growth Voronoi Diagrams”. In: Proceedings of the 7th Annual Sym-
posium on Computational Geometry (SoCG 1991). ACM. 1991, pp. 214–223.
DOI: 10.1145/109648.109672.

[SH75] Michael I Shamos and Dan Hoey. “Closest-Point Problems”. In: Proceed-
ings of the 16th Annual IEEE Symposium on Foundations of Computer Science
(SFCS 1975). IEEE. 1975, pp. 151–162.
DOI: 10.1109/SFCS.1975.8.

[Thi11] Alfred H Thiessen. “Precipitation Averages for Large Areas”. In: Monthly
Weather Review 39.7 (1911), pp. 1082–1089.
DOI: 10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2.

[Vor08] Georges Voronoi. “Nouvelles Applications des Paramètres Continus à la
Théorie des Formes Quadratiques. Deuxième Mémoire: Recherches sur
les Parallélloèdres Primitifs.” In: Journal für die reine und angewandte Math-
ematik (Crelles Journal) 134 (1908), pp. 198–287.
DOI: 10.1515/crll.1908.134.198.

[Yap87] Chee-Keng Yap. “An O(n log n) Algorithm for the Voronoi Diagram of a
Set of Simple Curve Segments”. In: Discrete & Computational Geometry 2.4
(1987), pp. 365–393.
DOI: 10.1007/BF02187890.

27

https://doi.org/10.1080/13658810701587891
https://doi.org/10.1016/S0010-4485(02)00065-9
https://doi.org/10.14463/GBV:865177619
https://doi.org/10.1080/16864360.2014.997637
https://doi.org/10.1145/109648.109672
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2
https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1007/BF02187890

BIBLIOGRAPHY

[ZL02] Gabriel Zachmann and Elmar Langetepe. “Geometric Data Structures for
Computer Graphics”. In: Eurographics 2002 - Tutorials. Eurographics Asso-
ciation, 2002.
DOI: 10.2312/egt.20021064.

28

https://doi.org/10.2312/egt.20021064

II
PUBLICATIONS

ON THE GENERATION OF SPIRAL-LIKE PATHS WITHIN

PLANAR SHAPES

Martin Held and Stefan de Lorenzo [HL18]

Published in:
Journal of Computational Design and Engineering

July 2018

[HL18]

Martin Held and Stefan de Lorenzo. “On the Generation of Spiral-Like Paths
Within Planar Shapes”. In: Journal of Computational Design and Engineering 5.3
(July 2018), pp. 348–357. DOI: 10.1016/j.jcde.2017.11.011

https://doi.org/10.1016/j.jcde.2017.11.011

On the generation of spiral-like paths within planar shapes

Martin Held, Stefan de Lorenzo ⇑
Universität Salzburg, FB Computerwissenschaften, 5020 Salzburg, Austria

a r t i c l e i n f o

Article history:
Received 17 August 2017
Received in revised form 15 November 2017
Accepted 23 November 2017
Available online 24 November 2017

Keywords:
Spiral-like path
Double spiral
Composite spiral
Medial axis
Smoothing
High-speed machining

a b s t r a c t

We simplify and extend prior work by Held and Spielberger [CAD 2009, CAD&A 2014] to obtain spiral-like
paths inside of planar shapes bounded by straight-line segments and circular arcs: We use a linearization
to derive a simple algorithm that computes a continuous spiral-like path which (1) consists of straight-
line segments, (2) has no self-intersections, (3) respects a user-specified maximum step-over distance,
and (4) starts in the interior and ends at the boundary of the shape. Then we extend this basic algorithm
to double-spiral paths that start and end at the boundary, and show how these double spirals can be used
to cover complicated planar shapes by composite spiral paths. We also discuss how to improve the
smoothness and reduce the curvature variation of our paths, and how to boost them to higher levels
of continuity.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Motivation

Several applications require to cover a planar shape bymoving a
circular disk along a path. E.g., in machining applications the disk
models the cross-section of a tool and the area models a so-
called pocket. Similarly, the disk may represent the area covered
by a spray nozzle or the area of visibility of a camera device used
for aerial surveillance. In our study the planar shape may be
bounded by one outer contour and possibly a number of island
contours (contained within the outer contour), where each contour
is formed by straight-line segments and circular arcs.

Traditional strategies for path generation include zigzag pat-
terns and the use of offset curves to form contour-parallel patterns.
See, e.g., Held (1991) for a detailed discussion of both strategies in
the context of pocket machining.

Common to these traditional strategies is the fact that the
resulting paths contain lots of sharp corners, i.e., abrupt changes
of the direction. The higher the speed or the moment of inertia of
the moving object represented by the disk, the more these direc-
tional discontinuities cause problems. E.g., for a high speed
machining (HSM) application, an abrupt change of direction
requires the tool to slow down to near-zero speed, change its direc-

tion and then accelerate until the desired maximum speed is
reached again. In a machining application, sharp corners also lead
to a high variation of the tool load.

1.2. Prior work

One way of generating a smooth continuous path is to rely on a
traditional strategy and to reduce sharp directional discontinuities
in a post-processing step: Pateloup, Duc, and Ray (2004) and Zhao,
Wang, Zhou, and Qin (2007), Zhao, Liu, Zhang, Zhou, and Yu (2009)
take a conventional tool path and smooth it by inserting circular
fillet arcs.

Spiral-like paths are widely regarded as a suitable means for
avoiding sharp directional discontinuities. Bieterman and
Sandstrom (2002) present an approach based on partial differential
equations (PDEs) to compute a spiral-like path inside a star-shaped
pocket. Its border contour is successively offset inwards by evalu-
ating the PDE at different points in time. Then these solution con-
tours are connected through radial interpolation. Banerjee, Feng,
and Bordatchev (2012) use a similar approach and solve the eigen-
value problem for an elliptic PDE. Neighboring contours are con-
nected based on a winding-angle parameterization. In addition,
they explain how to deal with one single island near the center
of the planar shape.

Zhou, Zhao, Li, and Xia (2016) propose a strategy that produces
smooth, double spirals which start as well as end at the boundary
of the planar shape. A series of isothermal lines is derived from a
parabolic PDE. By interpolating between successive isothermal
lines a closed spiral-like path is produced. Embedding a second
spiral-like path between adjacent revolutions of the initial one

https://doi.org/10.1016/j.jcde.2017.11.011
2288-4300/� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Society for Computational Design and
Engineering.
⇑ Corresponding author.

E-mail addresses: held@cosy.sbg.ac.at (M. Held), slorenzo@cosy.sbg.ac.at
(S. de Lorenzo).

Journal of Computational Design and Engineering 5 (2018) 348–357

Contents lists available at ScienceDirect

Journal of Computational Design and Engineering

journal homepage: www.elsevier .com/locate / jcde

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

33

yields the final double spiral. Multiply-connected input shapes, i.e.,
regions which contain islands, are subdivided into (nearly star-
shaped) sub-shapes. One connected path is produced by comput-
ing a double spiral inside every sub-shape, and linking neighboring
ones together at their ends.

Zhao et al. (2016) suggest space-filling curves (‘‘Fermat spirals”)
to cover planar shapes. Another strategy which is based on space-
filling curves is introduced by Romero-Carrillo, Torres-Jimenez,
Dorado, and Díaz-Garrido (2015): An Archimedean spiral is
deformed through linear morphing, and embedded into a convex
two dimensional region.

Abrahamsen (2015) constructs a polygonal spiral-like path
inside a planar shape bounded by straight-line segments. After cal-
culating an enhanced medial axis tree, a sequence of uniformly dis-
tributed wavefronts is computed. Each wavefront is given by a
sequence of vertices which are situated on the edges of the medial
axis. A closed spiral-like path is generated by manipulating the
positions of these vertices. The resulting path is then smoothed
by inserting circular arcs at sharp corners.

Held and Spielberger (2009, 2014) generate spiral-like paths for
general non-convex planar shapes with or without islands. A series
of circles are placed on the medial axis whose radii increase as time
progresses. Portions of these circles are interpolated and connected
by other circular arcs to form a G1-continuous path.

While our own work was originally motivated by an HSM appli-
cation at our industrial partner, we note that a need for paths that
cover specific areas while avoiding sharp directional discontinu-
ities arises also outside of CAD/CAM: E.g., Chandler, Rasmussen,
and Pachter (2010) insert fillet arcs into a polygonal path in order
to take care of maneuverability constraints of an unmanned aerial
vehicle. We refer to Keller (2017) for a recent detailed discussion of
smooth paths for aerial surveillance.

1.3. Our contribution

Since the algorithm by Held and Spielberger (2009, 2014) is dif-
ficult to analyze theoretically and even more difficult to implement
reliably, in this work we pick up their basic idea and simplify it sig-
nificantly: A linearization of the medial axis of the input shape
allows to come up with an algorithm for a polygonal spiral-like
path that is easy to implement. (And, indeed, an implementation
of this algorithm is already in commercial use at our industrial
partner.) The path is continuous, without self-intersections, and
respects a user-specified maximum ‘‘step-over” distance. This ini-
tial path is then smoothed by refining the positions of its vertices,
which helps to reduce the curvature variation. It can be boosted to
G1-continuity or C2-continuity by using an approximation by
biarcs or cubic B-splines. (We use the POWERAPX package
(Heimlich & Held, 2008; Held & Kaaser, 2014).)

As in the work by Held and Spielberger (2009, 2014), our spiral-
like paths start in the interior of the pocket and end at its bound-
ary. The simplicity of our approach allows to generalize this
scheme and to devise double-spiral paths that start and end at
arbitrary points on the boundary. This makes it easier to cover a
complex shape by one continuous spiral-like path by (1) decom-
posing the shape into simpler sub-areas, (2) computing a (double)
spiral within every sub-area, and (3) linking the individual paths to
form one continuous path. While such a double-spiral path is
unsuited for machining, it may find use in other applications, such
as layered manufacturing, spray painting, aerial surveillance, or
path finding algorithms for search&rescue missions.

Our approach relies heavily on the medial axis of the input: (1)
It serves as the key tool for capturing the geometry of the shape
and for computing offset-like curves which form the basis for our
paths. (2) It allows to determine an upper bound on the ‘‘step-

over” distance between portions of the spiral. Besides its inherent
simplicity, a major advantage of our approach is its generality: It
can deal with arbitrarily complex planar shapes with and without
islands, thereby guaranteeing a maximum ‘‘step-over” distance.

2. Preliminaries

Consider a planar input shape that is bounded by straight-line
segments and circular arcs, and suppose that we want to move a
disk of radius q inside this shape such that the area swept by the
disk equals (most of) the shape. If the disk has to stay within the
shape during the entire movement then it is obvious that its center
can never get closer to the boundary of the shape than q, even if
this constraint results in some areas of the shape being uncovered.
(E.g., for a polygonal shape this will happen at convex vertices of
the shape.) The loci of all permissible positions of the center of
the disk can be obtained as the Minkowski difference of the shape
and a disk of radius q centered at the origin. (The Minkowski dif-
ference A� B of two sets A;B of position vectors in the Euclidean
plane R2 is defined as A� B :¼ fc 2 R2 : c þ B#Ag.).

We call this set of permissible center positions a pocket, P. (But,
again, our work is not necessarily restricted to traditional pocket
machining applications.) It is well-known that (1) the boundary
@P of P consists of OðnÞ straight-line segments and circular arcs if
the initial shape was bounded by n straight-line segments and cir-
cular arcs, and that (2) it can be obtained in Oðn lognÞ time via
Voronoi-based offsetting (Held, 1991). We use the VRONI/ARCV-
RONI (Held, 2001; Held & Huber, 2009) package to compute Voro-
noi diagrams, medial axes1 and offsets.

Of course, in order to cover as much of P as possible, the disk
will have to be moved along the boundary @P of P once during a fin-
ishing pass. In an actual machining application one may want to
consider a Minkowski difference of the input shape and a disk of
radius qþ e, for some e > 0, thus pushing @P further inwards. This
will help to avoid that the tool gets very close to the boundary of
the input shape while traveling along our spiral-like path and
leaves only a thin amount of material along the boundary for the
finishing pass.

We assume that P is path-connected and simply-connected. If P
were disconnected then we would run our algorithm separately for
every connected component of P. If P contains islands—i.e., is
multiply-connected—then we follow (Held & Spielberger, 2014)
and convert it to a simply-connected area by introducing bridges,
see Fig. 1. (Needless to say, this is a rather complicated pocket that
is difficult to cover decently by only one spiral-like path.) Every
bridge corresponds to two straight-line segments which have
opposing orientations and which are added to the boundary of P
in an appropriate way such that one single boundary contour is
obtained. Human guidance in the selection of ‘‘good” bridges (rel-
ative to the intended application) is possible but, of course, the
algorithm explained in Held and Spielberger (2014) can compute
all bridges automatically without human interaction.

It is natural to break a spiral that winds around a point r for k
times into a sequence of k individual portions, where each portion
corresponds to one full turn around r. We call such a portion of a
spiral a lap. Then the step-over distance at point p of lap Liþ1 is
the minimum distance from p to the next inner lap Li, cf. Fig. 2. It
is obvious that, in general, the step-over distance has to be less
than the diameter of the disk which is being moved in order to
avoid regions of P that are not covered. In practice, considerably
smaller step-over distances are used, though. For HSM a good

1 Since no efficient algorithm to compute the medial axis of a NURBS curve (or
other freeform curve) is known, any freefrom input boundary would have to be
approximated by straight-line segments and circular arcs prior to the application of
our algorithm.

M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357 349

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

34

step-over value is a rather small fraction of the diameter that
depends on the material of the cutter as well as on the workpiece.
(It is largely independent of the geometry of the pocket.) E.g., for
aluminum or (non-hardened) steel a typical maximum step-over
is given by about 15% of the diameter. In any case, it is important
that the user can control the maximum step-over D of a spiral path.

We note that in mathematics the term ‘‘spiral” has come to
mean a curve that emanates from a center point c and winds
around c at a monotonically increasing curvature and distance.
Hence, every lap of a spiral lies between an inner circle and an
outer circle centered at c: Every lap starts at its inner circle and
reaches its outer circle after winding around c once. Thereby the
fraction do

di
of the distance do to the outer circle over the distance

di to the inner circle decreases monotonically.
In the sequel we investigate ‘‘spiral-like” paths that can be seen

as a generalization of standard spirals. Our paths also start at a cen-
ter point, r, and wind around it. And every lap of such a spiral-like
path starts at an inner boundary curve and reaches its outer
boundary curve after winding around r once, thereby also decreas-
ing the fraction do

di
monotonically. However, for our spiral-like paths

we allow general nested Jordan curves2 in lieu of the concentric cir-
cles as boundary curves. Hence, the distances to r and to the inner
boundary curve as well as the curvature may also decrease along a
lap of such a path. Still, for the sake of terminological simplicity,
we prefer to apply the term ‘‘spiral” also to our spiral-like paths in
the rest of this paper.

3. The medial axis tree

According to standard definition the medial axis MAðPÞ of the
pocket P is the locus of all points inside P which have more than
one closest point on the boundary of P, cf. Fig. 3(a). It is known
to be a subset of the Voronoi diagram of P, and consist of
straight-line segments and portions of conics as edges.

In order to simplify the algorithm by Held and Spielberger
(2009) we approximate every edge of the medial axis MAðPÞ by
a polygonal chain. The vertices of such a polygonal chain are
obtained by placing uniformly distributed sample points on the
edge such that the maximum length of a segment of the chain is
less than a user-supplied or heuristically determined value k. This
process yields the discrete medial axis MA0ðPÞ. We refer to the
sample points on MAðPÞ and the original nodes of MAðPÞ as nodes
of MA0ðPÞ.

As usual, the clearance, clrðpÞ, of a point p on MA0ðPÞ is the
radius of the largest disk (‘‘clearance disk”) centered at p that fits
into P. For every node p of MA0ðPÞ we consider the points
p1; p2; . . . ; pk where the clearance disk of p touches the boundary
@P of P, and construct the clearance line segments
pp1; pp2; . . . ; ppk. If p happens to be the center of a circular arc a
of @P then we select finitely many points on a which are uniformly
spaced, with a spacing less than k. Note that some clearance lines
might share the same reflex vertex of the boundary @P of P as start
point.

We add the set of all clearance line segments toMA0ðPÞ and get
the new (planar straight-line graph) MA00ðPÞ. The medial axis
MAðPÞ is known to form a tree because P does not contain islands.
This property carries over to MA00ðPÞ if we regard the start points
of two different clearance lines as different nodes even if they coin-
cide at the same reflex vertex of the boundary of P. Hence, by
choosing one (inner) node r of MA00ðPÞ as root we can turn
MA00ðPÞ into a rooted tree T r , the discrete medial axis tree derived
from MA00ðPÞ. (Since we will use this symbol for the discrete med-
ial axis tree of P at various places and also within mathematical
equations we keep the notation simple and do not make the
dependence of T r on P explicit in the notation.) All points that cor-
respond to the leaves of T r lie on @P. In particular, every start point
of a clearance line on @P forms a leaf node of T r .

Since all edges of T r are given by line segments, it is easy to
compute the (Euclidean) length dT r ðp; qÞ of the unique path along
T r between two nodes p; q of T r . This allows us to define the Eucli-
dean height of a node p of T r as

hT r ðpÞ :¼ max
q

dT r ðp; qÞ;

where the maximum is taken over all nodes q of the sub-tree(s) of
T r rooted at p.

2 A Jordan curve is a closed curve that is simple, i.e., which has no self-intersections.

Fig. 3. (a) Medial axis of a pocket P; (b) the height-balanced discrete medial axis
tree T r rooted at r, with the two leaves that define the Euclidean height hT r ðrÞ of r
shown in red and the corresponding two radial paths shown in orange.

Fig. 1. A cubic B-spline as a spiral-like path inside a multiply-connected planar
shape which was converted to a simply-connected shape by means of bridges
(shown in blue).

Fig. 2. The local step-over distance at a point p on lap Liþ1 of a spiral is the
minimum distance from p to the next inner lap Li .

350 M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

35

As in Held and Spielberger (2014) we assume that T r is height-
balanced: We assume that hT r ðrÞ is defined by at least two different
leaves of T r . That is, we assume that there exist k P 2 distinct leaf
nodes v1;v2; . . . ;vk of T r such that

hT r ðrÞ ¼ dT r ðr; v1Þ ¼ dT r ðr; v2Þ ¼ � � � ¼ dT r ðr; vkÞ:

Every path from r to such a leaf v i is called a radial path of T r . See
Fig. 3. (For the sake of visual clarity we show this toy example with
a very coarse discretization and (in subsequent figures) with an
unrealistically large step-over distance.) If no such node r exists in
T r then we insert a new node within an edge of T r in order to
achieve such a perfect height balance. The computation of all Eucli-
dean heights of the nodes of T r and the height-balancing can be
done easily in time linear in the number of edges of T r (Held &
Spielberger, 2014). In particular, no human interaction is needed
for choosing the root r. In the sequel we will use r as the start point
for our spiral-like paths.

Of course, the algorithms explained in the rest of our paper
remain applicable if a point other than the height-balanced root r
is chosen as start point. As a matter of principle, any point p in
the interior of the pocket P could be chosen as start point of the
spiral-like path and root r of the medial-axis tree. If p does not
lie on MA00ðPÞ then we consider the (closest) projection of p onto
the boundary @P of P, and add the elongation of this projection
between MA00ðPÞ and @P as dummy Voronoi edge (Held &
Spielberger, 2009). We note, though, that choosing a start point
other than the height-balanced root rwill result in (1) an increased
length of the final spiral-like path, (2) in an increased number of
laps, and (3) in a highly irregular spacing of the laps. See Fig. 4
for sample (polygonal) spirals computed by the algorithm pre-
sented in Section 5 for five different start points on MA00ðPÞ. Note
that the same maximum step-over distance D was used for all five

paths. We refer to Held and Spielberger (2014) for a detailed dis-
cussion of the impact of a variation of the start point.

4. Impulse propagation

Similar to Held and Spielberger (2009) we consider an impulse
which is active during the time interval ½0;1�, which starts at the
root r of the discrete medial axis tree T r at time t :¼ 0, and dis-
charges concurrently at all leaves of T r at time t :¼ 1. Suppose that
we want the impulse to travel along every radial path of T r with
constant velocity. Then the impulse has to cover a distance of
hT r ðrÞ within unit time, which implies that the velocity v of the
impulse along every edge of a radial path equals hT r ðrÞ. Hence, a
node p on a radial path of T r is reached at the ‘‘start time”

t ¼ hT r ðrÞ � hT r ðpÞ
hT r ðrÞ

:

This simple observation can be used in a recursive manner to deter-
mine the time when the impulse reaches a specific node (or even
any point within an edge of T r) together with the impulse velocity
for all edges of T r . Initially, the start times for all nodes on the radial
paths of T r are known. (Recall that the start time tr of the root r was
set as tr :¼ 0.) Now imagine removing all edges of all radial paths
from T r . Peeling off these ‘‘longest branches” splits T r into a num-
ber of rooted sub-trees, where every sub-tree is rooted at a node of
a radial path. Let p be the root of the sub-tree Tp, and let us denote
its start time by tp. We choose a leave node p0 in Tp such that

dT r ðp;p0Þ ¼ max
v2Tp

fdT r ðp;vÞg;

with ties being broken arbitrarily. That is, the path from p to p0 is a
longest path in Tp (and also in T r) from p to a leaf of Tp. Let q be the
child of p on this path, and let le denote the length of the edge e
between p and q. The length dT r ðp;p0Þ of the entire path from p to
p0 is denoted by lb. Since the impulse has to reach p0 at time
t :¼ 1, the (constant) velocity of the impulse along e and all other
edges of the path from p to p0 is given by

ve ¼
lb

1� tp
¼ hT r ðqÞ þ le

1� tp
:

We conclude that the impulse reaches q at the start time

tq ¼ tp þ
le
ve

:

Similarly, due to the fact that the velocity of the impulse stays con-
stant along the whole edge e, the start time ts of a point s within
(the relative interior of) e is simply given by

ts ¼ tp þ
dT r ðp; sÞ
ve

:

As in the case of the nodes on the radial paths, the start times of all
other nodes on the path from p to p0 can be computed easily, too.
Once all these start times are known we remove from Tp all edges
of the path from p to p0, thereby splitting Tp into a number of
sub-trees. Then we apply this scheme recursively to these newly
generated sub-trees.

Note that we have ve 6 v , where v is the velocity along a radial
path of T r . Furthermore, the equality ve ¼ v holds only if the path
from r to p0 forms a radial path, too.

This recursive scheme allows us to determine all edge velocities
and start times in time linear in the number of edges of T r . It is an
easy exercise to prove that this scheme guarantees that the
impulse will reach all leaves of T r at time t :¼ 1. Effectively, this
scheme splits T r into a number of branches, with constant impulse
velocity per branch. See Fig. 5. We denote this set of branches by B.

Fig. 4. Moving the start point of a spiral path away from the height-balanced root r
may have a significant impact on the length of the path and on the spacing of its
laps. The middle (larger) figure shows the path that starts at r.

M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357 351

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

36

As the impulse flows through T r , it covers an increasing portion
of T r . The pointwhich the impulse reaches at time ton itsway from r
to some leaf of T r is called a vertex at time t. Clearly, for any time
t 2 ½0;1� there exist at most as many vertices as there are leaves in
T r . By computing all vertices at a specific moment in time, and
arranging them in the order in which they appear when T r is tra-
versed in depth-first manner, it is possible to construct a closed
polygonal chain, a so-called wavefront wðtÞ at time t.

The spacing of the wavefronts has to be chosen carefully in
order to guarantee that the user-specified maximum step-over D
is respected. Consider a uniform decomposition of time
ðt0; t1; . . . ; tmÞ, for some (yet unknown) m 2 N, with 0 ¼ t0 <

t1 < � � � < tm ¼ 1. The vertices of the wavefront wðtiÞ are given by
the positions of the impulse at time ti, see Fig. 6.

Let t� :¼ tiþ1 � ti denote the constant time difference between
the times of two neighboring wavefronts. Recall that the (symmet-
ric) Hausdorff distance HðX;YÞ between two closed and bounded
sets X;Y � R2 is defined as

H X;Yð Þ :¼ max max
x2X

min
y2Y

d x; yð Þ; max
y2Y

min
x2X

d x; yð Þ
� �

;

where dðx; yÞ denotes the standard Euclidean distance of two points
x; y 2 R2. Our goal is to choose t�, such that

HðwðtiÞ;wðtiþ1ÞÞ 6 D for all i 2 f0;1; . . . ;m� 1g:

We recall that the impulse velocity is bound by hT r ðrÞ for every
edge of T r . This implies that the impulse travels a distance of at
most s � hT r ðrÞ in time s along T r . Hence, we are able to establish
an upper bound on the symmetric Hausdorff distance between
wðs0Þ and wðs0 þ sÞ, with s0 2 ½0;1� s�, as follows:

Hðwðs0Þ;wðs0 þ sÞÞ 6 s � hT r ðrÞ:

This implies that the impulse travels a distance of at most D along
T r during the time s if we set

s :¼ D
hT r ðrÞ

:

Summarizing, in order to ensure HðwðtiÞ;wðtiþ1ÞÞ 6 D for all
i 2 f0;1; . . . ;m� 1g, it suffices to set m as

m :¼ 1
s

� �
:

This gives

t� :¼ 1
m

as the constant time distance between two impulse times that cor-
respond to neighboring wavefronts. Note that this construction

implies that the radial paths are split by the wavefronts into sec-
tions with length at most D.

5. Generating one spiral

We now focus on the generation of the actual spiral path, which
is fundamentally different to the strategy applied by Held and
Spielberger (2009). We explain and depict counter-clockwise
(CCW) spiral paths; the modifications needed to obtain clockwise
(CW) spirals are trivial. A spiral path SðP;DÞ is made up of m laps
L1; L2; . . . ; Lm. In addition, we have L0 :¼ frg and Lmþ1 :¼ @P as two
‘‘trivial” laps. Each of the laps is a polygonal chain whose vertices
lie on T r . In a nutshell, we compute the innermost (non-trivial)
lap L1 by interpolating between the wavefronts wðt0Þ, i.e., the root
r of T r , and wðt1Þ. Similarly, Lm is formed by an interpolation
between wðtm�1Þ and wðtmÞ, i.e., @P. See Fig. 7. All other (non-
trivial) laps are formed by interpolations between L1 and Lm. Every
lap starts and ends at one specific clearance line incident at r. The
important technical issue is to generate these laps in such a way
that the step-over distance between neighboring laps does not
exceed the user-specified maximum step-over D.

We start with explaining how L1 is generated, see Fig. 8. Recall
that wðt0Þ degenerates to r. Suppose that q0 is the vertex of wðt1Þ
that is intersected by the clearance line rv0, on which all laps start
and end. Thus, L1 starts at r and ends at q0. We number the vertices
of wðt1Þ in CCW order, starting at q0. Now consider some vertex of
wðt1Þ, e.g., q4 in Fig. 8. Let d denote the circumference of wðt1Þ, let
d4 denote the length of the polygonal chain q0q1 . . . q4, and let
d4 :¼ dT r ðr; q4Þ, i.e., the distance from r to q4 along T r . Then a can-
didate corner c of L1 is placed on the path from q4 to r at a distance
(along T r) of

1� d4

d

� �
� d4

from q4. We store c at the corresponding edge of T r . Note that some
vertices of wðt1Þ might end up storing candidate corners on the
same edge or path towards r. These candidate corners are classified
as ‘‘type-1” candidate corners.

After setting the weight d to the circumference of @P and letting
the vertices of wðtm�1Þ play the role of r, we obtain type-1 candi-
date corners for Lm in a similar way by moving from the vertices
of wðtmÞ, i.e., @P, towards vertices of wðtm�1Þ. If required, we can
also let Lm wind around r a bit more than once, and let it end at
some point on @P other than v0, by making d larger than the cir-
cumference of @P.

Fig. 5. The velocities on some branches of T r .

Fig. 6. A series of uniformly spaced wavefronts inside the pocket for m :¼ 5. The
wavefront wðt0Þ equals r, and wðt5Þ coincides with the boundary of P; both are not
shown. The two radial paths in T r between r and leaves of T r are shown in orange.

352 M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

37

In order to actually generate L1 we scan T r in a depth-first
order, starting at r and moving along rv0 as first branch of T r .
The recursive scan stops whenever a candidate corner for L1 is
encountered. This depth-first scan establishes all vertices of L1 in
the desired (CCW) order.

Now we start a new depth-first scan towards the leaves of T r at
every vertex q of L1. The recursion of the depth-first scan is stopped
whenever we get to a distance ðm� 1Þ � D from q along T r or, triv-
ially, if we reach the boundary @P. At every such stopping point of
the recursion a new ‘‘type-2” candidate corner for Lm is placed.
Then another depth-first scan starting at r reveals all vertices of
Lm by stopping the recursion whenever a candidate corner for Lm
(of either type-1 or type-2) is encountered.

Our construction implies the following two distance properties:

HðL0; L1Þ 6 D and HðL1; LmÞ 6 ðm� 1Þ � D:

We now argue that Lm is guaranteed to be contained in the annulus
defined by wðtm�1Þ and wðtmÞ: Every type-1 candidate corner for Lm
lies in this annulus since it is generated by an interpolation between
wðtm�1Þ andwðtmÞ. Every type-2 candidate corner which does not lie
on @P is at a distance of ðm� 1Þ � D along T r from a vertex of L1 and,
thus, at a distance of at least ðm� 1Þ � D from r. However, all vertices
of wðtm�1Þ are at a distance of at most ðm� 1Þ � D from r. Thus, also
every type-2 candidate corner lies within the annulus defined by
wðtm�1Þ and wðtmÞ. As a result, Lm lies also in this annulus. (More
precisely, all of Lm lies within the interior of this annulus except
for the start point and end point of Lm.) In particular, we get

HðLm; @PÞ ¼ HðLm; Lmþ1Þ 6 D

as the third distance property.
The remaining laps L2; . . . ; Lm�1 can be generated similar to the

generation of the initial wavefronts if we take the freedom to
regard one lap as a special type of wavefront between L1 and Lm:
Again we let an impulse propagate along T r . However, this modi-
fied impulse propagation starts at time t :¼ 0 at the vertices of
L1, and ends at time t :¼ 1 at the vertices of Lm. Then, for properly
chosen velocities of the impulse on the edges of T r , the ‘‘wave-

front” that corresponds to the time i=m� 2 forms the lap Liþ1, for
i 2 f1;2; . . . ;m� 2g.

By connecting all non-trivial laps L1; L2; . . . ; Lm in the natural
way we obtain a polygonal path SðP;DÞ inside P. Trivially, SðP;DÞ
starts at r and ends on @P. Furthermore, SðP;DÞ is not self-
intersecting because we move outwards in a strictly monotonic
fashion, starting at r, until we arrive at @P. And due to the construc-
tion, SðP;DÞ respects the maximum step-over D: The m� 2 laps
L2; . . . ; Lm�1 split a distance (along T r) of at most ðm� 1Þ � D into
m� 1 portions of length at most D. Hence, the Hausdorff distance
between Li and Liþ1 is at most D for all i 2 f1;2; . . . ;m� 1g.

We summarize our result as follows:

HðLi; Liþ1Þ 6 D for all i 2 f0;1; . . . ;mg;

which settles the claim that our spiral path SðP;DÞ obeys the user-
specified maximum step-over D. We note that D forms an upper
bound on the true maximal step-over distance: We do not deter-
mine the actual Hausdorff distance but only measure distance along
(possibly curved) edges of the medial axis of P. (An algorithm by Alt,
Behrends, & Blömer (1995) would allow to compute one Hausdorff
distance between polygonal curves with a total of n vertices in
Oðn lognÞ time but there is no obvious way for applying this algo-
rithm to the laps of our spiral path under generation.)

6. Improving and smoothing a spiral

6.1. Impulse modification

Recall that the impulse moves with constant velocity per
branch of B, cf. Fig. 5. In particular, it is constant within every edge
of T r . Hence, the velocity of the impulse might change rapidly at
some nodes of T r . This leads to exceedingly sharp corners along
the spiral path. We now explain how to remedy this problem by
modifying the impulse propagation.

In order to mitigate the effects of rapidly changing velocities
whenever a shorter branch starts, we part from the simple scheme
of using constant velocities and assign a linear velocity function to
every element of B. As in Section 4, the dynamic velocity of r is set
to hT r ðrÞ and its start time tr is set to 0. The branches in B are, again,
considered in the order in which they appear when T r is traversed
in depth-first manner. Let b be the branch that is currently
inspected, with p as its start node, p0 as its end (leaf) node, and lb
as its length. According to Section 4, the constant ‘‘average”
impulse velocity assigned to all edges of b is given by

vavg ¼
lb

1� tp
;

where tp denotes the start time at p. Roughly, the new idea is to
start with an initial velocity along b that (ideally) is identical to
the velocity vp with which the impulse reached p, and to decrease
this velocity linearly as one gets closer to @P. Of course, even after
this modification the impulse will have to travel a distance of lb
within time 1� tp.

We define the start velocity along b as

vstart :¼
vp if 2vavg P vp;

2vavg else:

�

Furthermore, the end velocity vend along b is defined as

vend :¼
2vavg � vp if 2vavg P vp;

0 else:

�

The corresponding linear velocity function #b for the velocity along
b is given by

#bðsÞ :¼ vstart � ðvstart � vendÞ s;

Fig. 7. (a) The first and the last lap are derived by interpolating neighboring
wavefronts. (b) The final spiral path that starts at r and ends on @P.

Fig. 8. The first lap starts at the root r of T r and ends at a vertex q0 of wðt1Þ on a
clearance line (shown in green), on which all laps start and end.

M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357 353

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

38

with s 2 ½0;1�. Obviously, the velocity along b at a specific time t,
with tp < t 6 1, is given by

#b t � tp
1� tp

� �
:

Finally, at time t the impulse has travelled a distance of

vstart þ vq

2
ðt � tpÞ

along b. We note that the distance travelled by the impulse equals lb
for t :¼ 1, for both cases in the settings of vstart and vend.

We can now use this modified linear impulse velocity and apply
the schemes discussed in Sections 4 and 5 to compute the wave-
fronts as well as the spiral path, see Fig. 9. We note that the mod-
ified impulse travels with the (standard) constant velocity
v ¼ hT r ðrÞ along all radial paths of T r . Along all other branches
the velocity varies but never exceeds v. This fact implies that the
distance analysis of Section 5 is still applicable and that the maxi-
mum step-over D is respected everywhere along the final spiral
path even for the modified impulse setting.

In order to reduce directional discontinuities even further we
keep in mind that a vertex v of lap Li of the spiral path could be
moved along T r towards @P as long as this movement does not
(1) result in a violation of the maximum step-over D or (2) cause
v to run over Liþ1. One could even require that v keeps a certain
minimum distance from Liþ1 in order to avoid that laps get extre-
mely close to each other. In any case, every vertex v has a range
of positions which are permissible for an outwards shift of v. (This
range can also be empty for some particular vertex.)

Let ðv1;v2;v3Þ be a triple of consecutive vertices of the spiral.
We say that the angle at v2 is convex if v2 lies to the left of the
ray from v1 to v3, reflex if it lies to the right of this ray, and tangen-
tial otherwise. We compute the deviation of the angle at v2 from
180�, and insert its absolute value into a priority queue PQ. We also
keep a link from v2 into the position of this value in PQ, and from it
back to v2. This is done for all vertices of the spiral path. The prior-
ity queue PQ is organized such that it maintains the maximum
angular deviation at its top.

Once PQ has been filled we are ready to shift some vertices. Let
v2 be the vertex that is linked to the angular deviation currently
fetched from PQ. If the angle at v2 is convex then we shift v2 out-
wards. If it is reflex then we shift its predecessor v1 and its succes-
sor v3 outwards. Of course, the shifting of one or two vertices of the
triple ðv1; v2;v3Þ shall not result in deviations of the angle(s) from
180� at the unshifted vertices which are greater than the one which
we try to reduce at v2. In theory, the optimum amount(s) for shift-
ing could be determined by solving a (non-linear) optimization
problem. We resort to a much simpler approach and sample 10
uniformly distributed positions within the maximum permissible
range of new positions. (The sample number 10 turned out to be

good enough for our purposes; there is no theoretical justification
for it.) If the optimal shift determined this way does indeed reduce
the maximum absolute deviation of the angles at v1;v2 and v3

from 180� then we delete the three entries for v1;v2;v3 from PQ
and insert the three absolute values of the new deviations from
180� at v1;v2 and v3 into PQ. Otherwise, the entry for v2 is deleted
from PQ but no shift is carried out. See Fig. 10(a) for a result of this
shifting strategy applied to the setting of Fig. 9(b). Additional sam-
ple paths are shown in Fig. 11; the polygonal path derived from a
constant impulse propagation for the sample pocket of Fig. 11(b) is
shown in Fig. 4.

A minor technical problem is given by the fact that shifting a
vertex towards @P might cause it to run over a node of T r . In such
a case we have to split the vertex into several individual copies that
move independently towards @P.

6.2. Higher-order smoothing

For now we have obtained a spiral path which is described by a
polygonal chain. Practical experiments made it apparent quickly

Fig. 9. (a) Spiral path according to piecewise constant velocities of the impulse, cf.
Section 5. (b) Spiral path according to the modified linear velocities of the impulse.

Fig. 10. (a) Spiral path after some vertices were shifted outwards; (b) approxima-
tion of this path by a cubic B-spline.

Fig. 11. Sample polygonal spiral paths generated based on the modified impulse
propagation.

354 M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

39

that there is nothing to gain by employing non-linear functions for
the impulse velocity: The higher the algebraic degree of the veloc-
ity function, the more ‘‘tricky” freedom for choosing ‘‘good” param-
eters and the more work to implement such a function.

Experiments made it also apparent that resorting to a very fine
sampling of the medial axis and, thus, to a large amount of clear-
ance lines does not help to make the spirals look smoother. Rather,
the finer the sampling, the more the resulting spirals seemed to
‘‘converge” to some limit curve. This can be understood if one ana-
lyzes the mathematics of the impulse propagation in the neighbor-
hood of a sharp corner of a spiral: For parallel clearance lines the
propagation of the impulse obeys the intercept theorem and, thus,
the wavefront locally follows a straight-line segment even if the
sampling rate is increased significantly.

As a rule of thumb, using up to five times as many clearance
lines as we used in our sample Fig. 10 seems to yield decent results.
The sampling can be coarser along straight-line edges of the medial
axis of P and should be finer along conic edges.

In any case, a purely polygonal pathwill always show directional
discontinuities at its corners, no matter how much effort were
invested in an improved impulse propagation. Hence, it seems nat-
ural to resort to an approximation of our polygonal spirals by
higher-order primitives if the smoothness of the path is of a concern.

Of course, an approximation of a spiral path should still haveD as
maximum step-over distance, and it must not leave the pocket P.
These two requirements place constraints on an approximation.
Suppose that our spiral path SðP;D1Þ has a maximum step-over dis-
tance of D1. If we can guarantee HðSðP;D1Þ;AÞ 6 D2 for its approxi-
mation A then we know that A has a maximum step-over distance
of D1 þ D2. Hence, we can proceed as follows: (1) We choose an
approximation threshold e with 0 < e < D, (2) we compute
SP :¼ SðP;D� eÞ, and (3) we compute an approximation A of SP
such that HðSP;AÞ 6 e. This approach ensures that the maximum
step-over distanceD is not exceeded byA. In order to guarantee that
A does not leave P it suffices to ensure that the approximation of the
last lap stays locally on the left side of that lap. All other laps can be
approximated using a symmetric tolerance.

For this work we used the POWERAPX-package (Heimlich & Held,
2008; Held & Kaaser, 2014). Amongst other things, it supports the
approximation of polygonal chains by biarcs and cubic B-splines,
thus achieving G1 continuity or even C2 continuity. The approxima-
tion curve A is guaranteed to lie within a user-specified tolerance
of the original input SP, and SP is guaranteed to lie within a user-
specified tolerance of A. Hence, a bound on the Hausdorff distance
between A and SP can be established. These tolerances can be
either symmetric, asymmetric, or even one-sided. (A one-sided tol-
erance is used for the last lap of SP.)

In Fig. 10(b) we see the approximation of the spiral path shown
in Fig. 10(a) by a cubic B-spline. For the sake of simplicity, we sub-
jected the actual spiral of Fig. 10(a) to the approximation, without

reducing the maximum step-over distance D. Hence, although we
used a tiny approximation threshold e which, if plotted, would
hardly exceed the penwidth used for drawing @P, the step-over dis-
tance of the resulting cubic B-splinemight exceedD ever so slightly.
Other sample cubic B-Spline spirals are shown in Figs. 1 and 12.

7. Double and composite spirals

7.1. Double spiral

All spirals discussed so far have one fact in common: They start
at some point of the medial axis and end at the boundary @P of the
pocket P. We now generalize our approach to a double spiral that
starts and ends at the boundary @P.

As in the case of a single spiral, the user-specified step-over D
implies a certain minimum number of wavefronts. For the sake
of descriptional simplicity, suppose that this number is odd and
that we have 2kþ 1 wavefronts wðt0Þ;wðt1Þ; . . . ;wðt2kÞ, with wðt0Þ
equal to r and wðt2kÞ equal to @P. We use the algorithm of Section 5
to compute one single ‘‘inner” spiral with maximum step-over 2D
which starts at r and ends at v0 on @P. Let L1; L3; . . . ; L2k�1 denote
the successive laps of this spiral. Hence, L1 starts at r and ends at
the intersection q of wðt2Þ with rv0; L3 starts at q and ends on
wðt4Þ, and so on. In particular, L2k�1 ends at v0 on @P.

Let L2kþ1 be identical to @P. For i 2 f1;3; . . . ;2k� 1g, we plant an
impulse at every vertex of lap Li that moves along T r towards the
leaves of T r , starting on Li at time t :¼ 0 and reaching Liþ2 at time
t :¼ 1. Stopping the impulse at time t ¼ 1=2 yields the vertices of
the laps L2; L4; . . . ; L2k of the ‘‘outer” spiral, where L2 starts at q
and L2k ends at v0 on @P. As for a single spiral, the positions of
the end-points of L2k�1 and L2k on @P can be adjusted to meet speci-
fic needs. In Fig. 13(a), the outer spiral and the vertices of the inner
spiral are shown.

In order to connect the start of L2 at qwith the start of L1 at rwe
move from the vertices of L1 towards r along T r for a distance of D,
thus obtaining candidate corners of a polygonal path that connects
L1 and L2. (This is similar to the generation of L1 in Section 5.) We
note that this construction ensures that the resulting double spiral
is not self-intersecting and respects the maximum step-over D. In
Fig. 13(b), a full double spiral is shown for our sample pocket.

Of course, the smoothing operations of Section 6.1 are applica-
ble again. Fig. 14 shows the outer polygonal spiral computed
according to the modified impulse propagation and smoothing,
and Fig. 14 shows an approximation of the full double spiral by a
cubic B-spline. The outer spiral was stopped in the upper-left cor-
ner of @P. (Again, we used the POWERAPX package (Heimlich & Held,
2008; Held & Kaaser, 2014) to obtain this approximation.)

Fig. 12. Cubic B-spline approximation of the polygonal spiral path of Fig. 11(b).

Fig. 13. (a) The vertices of the outer spiral (highlighted by blue circles) are placed
halfway between the corresponding vertices of the inner spiral. (b) Final double
spiral consisting of the inner spiral (red), outer spiral (blue) and connecting
polygonal path (green).

M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357 355

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

40

7.2. Composite spiral path

As suggested in Held and Spielberger (2014), we can decompose
a complex (possibly multiply-connected) pocket into simpler sub-
pockets and then compute spiral paths within these sub-shapes.
The obvious disadvantage of having multiple spirals is the need
to link them into one path. In general, this will require the applica-
tion to pause during these linking portions of the path, like during
retraction moves in machining.

We now employ our machinery for computing single and dou-
ble spirals to obtain composite spiral path. In a nutshell, we com-
pute suitable spirals within every sub-pocket and splice them
together appropriately.

Let D be a set of sub-pockets obtained by decomposing the
pocket P by some means. (See, e.g., Held & Spielberger, 2014 for
methods to achieve a decent decomposition.) The common bound-
ary between two sub-pockets is called a decomposition edge. We
derive a graph G from D in the following way: The nodes of G rep-
resent the sub-pockets ofD. Two nodes are linked by an edge of G if
the corresponding sub-pockets share a decomposition edge. For
the sake of descriptional simplicity we assume that G is a tree.
(Recall that we can use bridge edges to convert a multiply-
connected shape into a simply-connected shape.) A sample pocket
together with its decomposition and resulting graph G are shown
in Fig. 15(a).

We start with computing two leaf nodes v1; v2 of G which
determine the diameter of G. That is, no path in G between any pair
of nodes of G contains more edges than the path between v1 and
v2. The sub-pockets that correspond to v1 and v2 are the only ones
in which a single spiral is computed, cf. Fig. 15(b). In every other
sub-pocket we generate a double spiral. Now recall that we can
let our spirals end at arbitrary points on the pocket boundary. In
particular, we can make them start and end on the decomposition
edges. This makes it easy to link all spirals within the sub-pockets
that correspond to the diameter path between v1 and v2 into one
composite spiral path.

In a similar way, the other spirals can be linked to paths and
spliced into the composite spiral path obtained so far. We do not
go into details of the linking since the actual geometry of the link-
ing portions of the spirals depends on the geometry of the decom-
position edges. (For the sake of simplicity, in our own work we use
straight-line segments as decomposition edges.) See Fig. 15(c) for a
full composite spiral path.

8. Discussion and conclusion

We introduce a simple and easy-to-implement algorithm for
computing polygonal spirals to cover planar shapes bounded by
straight-line segments and circular arcs. The paths do not self-

intersect and respect a user-specified maximum step-over dis-
tance. Smoothing heuristics help to prevent excessively sharp cor-
ners, thus avoiding a drastic variation of the curvature. If our paths
are applied in an HSM application then smoothing will also help to
avoid a rapid change of the engagement angle. And, indeed, at least
our single spirals have already mastered a practical test at the
shop-floor level. See Fig. 16 for two pockets machined by our
industrial partner using flat-end milling.

Fig. 14. (a) Outer polygonal spiral generated based on the modified impulse
propagation. (b) Resulting double spiral as a cubic spline.

Fig. 15. (a) Subdivision into five sub-pockets and resulting graph G (in the top right
corner); (b) first and last single spiral; (c) cubic B-spline as full composite spiral
path.

Fig. 16. Two parts machined in aluminum.

356 M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

41

Currently we use POWERAPX to approximate a polygonal spiral by
biarcs or cubic B-splines. While using a package like POWERAPX is
certainly the simplest approach to boost a polygonal spiral to
higher continuity, it is not necessarily the best approach: POWERAPX

is a general-purpose tool which ‘‘blindly” approximates a polygo-
nal path such that specific tolerances are met. As discussed, this
allows to obtain smooth spirals that still respect a user’s maximum
step-over distance D. However, it cannot take advantage of the fact
that some portions of our spirals would allow a much coarser
approximation since we are still far from exceeding D. Trying to
exploit this additional information for a better approximation that
either has fewer approximation primitives or a lower variation of
the curvature seems to be a promising avenue for future research.

Conflict of interest

None.

Acknowledgements

We would like to thank the Austrian Science Fund (FWF, Grant
P25816-N15) as well as EMCO GmbH (Hallein, Austria) for sup-
porting this research.

References

Abrahamsen, M. (2015). Spiral toolpaths for high-speed machining of 2D pockets
with or without islands. In: Proceedings of the ASME IDETC/CIE 2015 conference
(pp. V02BT03A017–V02BT03A017).

Alt, H., Behrends, B., & Blömer, J. (1995). Approximate matching of polygonal
shapes. Annals of Mathematics and Artificial Intelligence, 13(3), 251–265. https://
doi.org/10.1007/BF01530830.

Banerjee, A., Feng, H.-Y., & Bordatchev, E. V. (2012). Process planning for floor
machining of 21=2D pockets based on a morphed spiral tool path pattern.
Computers & Industrial Engineering, 63(4), 971–979.

Bieterman, M. B., & Sandstrom, D. R. (2002). A curvilinear tool-path method for
pocket machining. In: Proceedings of IMECE2002, ASME international mechanical
engineering congress (pp. 149–158).

Chandler, P., Rasmussen, S., & Pachter, M. (2010). UAV cooperative path planning.
In: AIAA guidance, navigation and control conference.

Heimlich, M., & Held, M. (2008). Biarc approximation, simplification and smoothing
of polygonal curves by means of Voronoi-based tolerance bands. International
Journal of Computational Geometry & Applications, 18(03), 221–250.

Held, M. (1991). On the computational geometry of pocket machining. Lecture notes in
computer science (Vol. 500). Springer-Verlag. ISBN 3-540-54103-9.

Held, M. (2001). VRONI: An engineering approach to the reliable and efficient
computation of Voronoi diagrams of points and line segments. Computational
Geometry: Theory and Applications, 18(2), 95–123.

Held, M., & Huber, S. (2009). Topology-oriented incremental computation of
Voronoi diagrams of circular arcs and straight-line segments. Computer-Aided
Design, 41(5), 327–338.

Held, M., & Kaaser, D. (2014). C2 approximation of planar curvilinear profiles by
cubic B-splines. Computer-Aided Design and Applications, 11(2), 206–219.

Held, M., & Spielberger, C. (2009). A smooth spiral tool path for high speed
machining of 2D pockets. Computer-Aided Design, 41(7), 539–550.

Held, M., & Spielberger, C. (2014). Improved spiral high-speed machining of
multiply-connected pockets. Computer-Aided Design and Applications, 11(3),
346–357.

Keller, J. F. (2017). Path planning for persistent surveillance applications using fixed-
wing unmanned aerial vehicles. PhD dissertation available from ProQuest.
AAI10247340. URL <http://repository.upenn.edu/dissertations/AAI10247340>.

Pateloup, V., Duc, E., & Ray, P. (2004). Corner optimization for pocket machining.
International Journal of Machine Tools and Manufacture, 44(12), 1343–1353.

Romero-Carrillo, P., Torres-Jimenez, E., Dorado, R., & Díaz-Garrido, F. (2015).
Analytic construction and analysis of spiral pocketing via linear morphing.
Computer-Aided Design, 69, 1–10.

Zhao, Z., Liu, B., Zhang, M., Zhou, H., & Yu, S. (2009). Toolpath optimization for high
speed milling of pockets. In: Second international conference on information and
computing science (Vol. 1, pp. 327–330).

Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-
Or, D., Chen, B., et al. (2016). Connected fermat spirals for layered fabrication.
ACM Transactions on Graphics, 35(4), 100.

Zhao, Z., Wang, C., Zhou, H., & Qin, Z. (2007). Pocketing toolpath optimization for
sharp corners. Journal of Materials Processing Technology, 192, 175–180.

Zhou, B., Zhao, J., Li, L., & Xia, R. (2016). Double spiral tool-path generation and
linking method for complex pocket machining. Machining Science and
Technology, 20(2), 262–289.

M. Held, S. de Lorenzo / Journal of Computational Design and Engineering 5 (2018) 348–357 357

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/5/3/348/5728966 by slorenzo@

cs.sbg.ac.at on 03 M
ay 2021

GENERATION OF SPIRAL-LIKE PATHS WITHIN PLANAR SHAPES

42

COMPUTING LOW-COST CONVEX PARTITIONS FOR

PLANAR POINT SETS BASED ON TAILORED

DECOMPOSITIONS

Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader [Ede+20]

Published in:
Proceedings of the 36th International Symposium on Computational Geometry (SoCG
2020)

June 2020

[Ede+20]

Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader. “Com-
puting Low-Cost Convex Partitions for Planar Point Sets Based on Tailored
Decompositions”. In: Proceedings of the 36th International Symposium on Compu-
tational Geometry (SoCG 2020). Vol. 164. Leibniz International Proceedings in
Informatics (LIPIcs). Zürich, Switzerland: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, June 2020, 85:1–85:10. ISBN: 978-3-95977-143-6. DOI: 10.4230/
LIPIcs.SoCG.2020.85

https://doi.org/10.4230/LIPIcs.SoCG.2020.85
https://doi.org/10.4230/LIPIcs.SoCG.2020.85

Computing Low-Cost Convex Partitions for Planar
Point Sets Based on Tailored Decompositions
Günther Eder
Universität Salzburg, FB Computerwissenschaften, Austria
geder@cs.sbg.ac.at

Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Stefan de Lorenzo
Universität Salzburg, FB Computerwissenschaften, Austria
slorenzo@cs.sbg.ac.at

Peter Palfrader
Universität Salzburg, FB Computerwissenschaften, Austria
palfrader@cs.sbg.ac.at

Abstract
Our work on minimum convex decompositions is based on two key components: (1) different
strategies for computing initial decompositions, partly adapted to the characteristics of the input
data, and (2) local optimizations for reducing the number of convex faces of a decomposition. We
discuss our main heuristics and show how they helped to reduce the face count.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, geometric optimization, algorithm engineering,
convex decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.85

Category CG Challenge

Supplementary Material The source code of our tools and heuristics is available at GitHub and can
be used freely under the GPL(v3) license: https://github.com/cgalab.

Funding Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

1 Introduction

The task of the 2020 Computational Geometry Challenge – called Challenge in the sequel
for the sake of brevity – was to compute minimum convex decompositions (MCD) of point
sets in the plane. We refer to the survey by Demaine et al. [2] for background information.

We employed several tools and heuristics to tackle the Challenge. All tools submitted
their solutions to a central database of ours, such that tool A could query and then improve
on solutions obtained by tool B, and vice versa. Most of our heuristics are based on local
search: Begin with a convex decomposition and iteratively modify it locally to reduce the
number of convex faces. The source code of our tools and heuristics is available at GitHub
and can be used freely under the GPL(v3) license: https://github.com/cgalab.

© Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 85; pp. 85:1–85:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

COMPUTING LOW-COST CONVEX PARTITIONS

45

85:2 Low-Cost Convex Partitions Based on Tailored Decompositions

2 Algorithmic methods

2.1 3-Approximation
Our tool 3Apx implements the 3-approximation algorithm by Knauer and Spillner [3]. Tests
quickly showed that this approach generates decompositions that are clearly not optimal.
Hence, we extended 3Apx by an approach based on onion layers [1]: We construct all onion
layers and then find convex decompositions of the annuli between the layers. Contrary to [3],
this approach does not modify the layer boundaries. See Figure 1 for sample decompositions
obtained via 3-approximation and the onion layers. Experiments showed that computing a
convex decomposition based on onion layers is superior to the 3-approximation algorithm
even without merging convex faces across different onion layers, see the plot in Figure 7.

Figure 1 In reading order: When using the 3-approximation implemented in 3Apx for an instance
with 1000 vertices we obtain a convex decomposition with 1350 faces; 1125 faces when using our
approach based on onion layers without partitioning into cells; 1123 faces when partitioning into
four cells and subsequent onion-layer based decomposition; and 1148 faces when using 16 cells.

A visual inspections of the results achieved by 3Apx quickly made it apparent that the
decompositions computed contained lots of extremely long and thin triangles. Hence, we tried
to partition a given input P into smaller “cells” and then run 3Apx on each cell individually.
Then the individual decompositions are joined by triangulating the area between them and
randomly dropping triangulation edges if this is possible without violating convexity. This
produced visually nicer images such as the last two decompositions in Figure 1 but did not
reduce the face counts substantially.

2.2 Merging faces
One of our earliest ideas was to do the obvious: Start with a triangulation of P and then
merge adjacent faces by randomly dropping triangulation edges as long as faces remain
convex. Tests with an initial straightforward implementation, MergeRefine, suggested
that this is a promising approach, easily beating 3Apx (Figure 7). In order to be better
prepared for refined heuristics we quickly re-implemented it in a new tool called Recursor.
In particular, we resorted to a more advanced data structure for storing our decompositions.

COMPUTING LOW-COST CONVEX PARTITIONS

46

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:3

Recursor keeps its state in a variant of a doubly-connected edge list (dcel) or half-edge
data structure. The base layer of our variant is a dcel of a triangulation of P . Additionally,
each half-edge pair is considered either constrained or not constrained, depending on whether
the edge is part of our convex decomposition of P . As a layer on top of the base dcel, each
constrained half-edge, in addition to the pointers to the next triangulation edges encountered
in clockwise (CW) or counter-clockwise (CCW) direction, also holds a reference to next CW
and CCW constrained edges; cf. Figure 2. This enables constant-time testing whether an
edge can be dropped, i.e., marked unconstrained, while keeping a fully fledged triangulation
of P during the entire process. To obtain a decomposition, Recursor first uses Shewchuk’s
Triangle [4] to construct a Delaunay triangulation of P , and then iterates over the edges
in a random order, dropping every edge that can be dropped. This process continues until
no further edge can be dropped, i.e., the decomposition is locally optimal.

Figure 2 Our two-layer doubly-connected edge list stores two planar graphs simultaneously, with
one planar graph being a subgraph of the other. A constrained half-edge h has references to its
neighbors in the convex decomposition (green) and to the underlying triangulation (blue). The
Challenge data set euro-night-10 is shown.

Hole refinement. It is not surprising that a locally optimal decomposition may consist of
many more faces than the true global optimum. Therefore, we worked on strategies that
allow us to move away from local optima: Recursor picks a face f of the decomposition
and a (random) number of its neighbors as a “hole” to work on. In general, it picks a face f

that is incident to a high-degree vertex. We consider a vertex of the decomposition to be of
high degree if its degree is larger than 3 or if its degree is equal to 3 and two incident edges
span an angle of 180°. In other words, high-degree vertices are vertices whose degree could
(locally) be reduced without violating convexity.

Once a hole has been selected, Recursor marks all its triangulation edges as constrained
again. In the next step it tries to drop these edges in a (different) random order. If this results
in a decomposition with no more faces than previously, we keep the new decomposition.
Otherwise, we abandon the modifications and restore the old decomposition. See Figure 3 for
a sample modification of a decomposition for the Challenge data set euro-night-0000100.

Recursor has several parameters to adjust, and we tried to fine-tune them “on the fly”
as we applied it to the Challenge instances. Eventually we settled on hole sizes of 7 + P

faces where P is a random number drawn from a geometric distribution with p = 0.4. In
each hole, we try a number of decompositions that is equal to the number of triangulation
edges in that hole.

Edge flips. Our initial decompositions were based on Delaunay triangulations of the input
points. But there is no argument to justify why Delaunay edges were to be preferred over
other triangulation edges. Hence, the next improvement of Recursor does a number of

SoCG 2020

COMPUTING LOW-COST CONVEX PARTITIONS

47

85:4 Low-Cost Convex Partitions Based on Tailored Decompositions

Figure 3 Top: An initial decomposition of euro-night-0000100 by Recursor. Bottom: A
detail of the initial decomposition (of the dashed blue frame in the full image), with those seven
faces shaded in gray that were selected by the hole-refinement algorithm. The decomposition after
one round of local optimization is shown on the right. The edges affected are shown in blue and
bold. The improved variant has two faces less.

random edge flips on the triangulation of a hole before attempting to drop edges. The
number of edge flips used by our code changed over time. After a series of quick experiments
we ended up with using roughly 5

√
t edge flips, where t is the number of triangles in the hole.

Continuous refinement. So far, each run of Recursor always started from a triangulation
of an input. We modified Recursor such that it could load a previous decomposition and
work on it. This allowed us to run it on different instances whenever we had computational
resources to spare, with no need to run it for long continuous stretches of time.

Parallel recursor. RecurseSplit is a wrapper around Recursor that partitions a given
decomposition into a few dozen or a hundred non-overlapping sets of contiguous faces such
that each set of faces forms a simply-connected region. Each such region is handed to a
dedicated instance of Recursor which attempts to reduce the face count within that region.
Note that Recursor does not require such a region to be convex. Since every individual
run of Recursor operates strictly within its own region, the resulting decompositions can
be merged trivially upon the completion of all runs of Recursor.

COMPUTING LOW-COST CONVEX PARTITIONS

48

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:5

2.3 Flipper
Flipper was implemented relatively late during the time of the Challenge, not even a month
prior to its end. It picks a point set and loads our currently best decomposition for that point
set. Then it performs the following steps repeatedly: First, Flipper picks a high-degree
vertex v and finds, if one exists, an incident edge (u, v) that can be rotated away from v

without violating convexity at either u or v. That is, if u0, u, u1 is a CCW ordering of the
vertices that share a decomposition edge with v then Flipper attempts to replace the edge
(u, v) by either (u, u0) or (u, u1) if permissible. See the green edge in Figure 4, left. As shown
in Figure 4, right, such a rotation may cause one of the edges incident at v or u to become
unnecessary. In that case, we drop it. If, however, no edge can be removed, then the degree
of v has decreased and the degree of either u0 or u1 has increased by one. Flipper then
applies this process to u0 or u1.

Variations, added even later, try to pick a specific input point p at regular intervals.
Then, with some probability, a rotation may only be carried out if the vertex whose degree
is increased by one gets closer to p. The motivation for this decision was that finding edges
that can be dropped gets easier if several vertices with higher degree are in close proximity.

v

uu1

u0
v

uu1

u0

Figure 4 A detail of the initial decomposition (within the dash-dotted green frame of Figure 3):
Rotating the green edge allows to drop the red edge while maintaining the convexity of all faces.

2.4 Orthogonal optimizer
Towards the end of the Challenge, a second batch of input instances was made available.
While the organizers had warned a priori that the inputs may contain collinear points, the
first batch of inputs contained relatively few subsets of collinear points per instance. In
contrast, in the second batch of data, each input instance contained points sampled from
a dense integer grid, resulting in every input instance containing many subsets of collinear
points aligned along horizontal and vertical lines

A visual inspection quickly revealed that the approaches implemented so far did not
generate decent decompositions for several inputs of the second batch. Therefore, we
were forced to devise and implement a new heuristic. OrthoOpt generates initial convex
decompositions geared towards this new type of input instances. It proceeds as follows: First,
it sorts the input points of P lexicographically. Then it connects input points that share
the same x-coordinate in order of increasing y-coordinates. Finally, it constructs a bottom
bounding chain B and a top bounding chain T by linking the bottom-most (top-most, resp.)
input points, and it triangulates all pockets between the convex hull of P and the current
decomposition, as bounded by B and T . Of course, OrthoOpt can also proceed relative
to y-coordinates rather than x-coordinates; see Figure 5. These initial decompositions were

SoCG 2020

COMPUTING LOW-COST CONVEX PARTITIONS

49

85:6 Low-Cost Convex Partitions Based on Tailored Decompositions

passed to Flipper and Recursor for further optimization. In particular, these tools helped
to get rid of unnecessary triangulation edges inside of the pockets formed by the convex hull
of P and the two chains B and T .

3 Practical computation

3.1 Computational environment
Our tools were run on a diverse set of computers operated by our lab as well as by other
groups at the University of Salzburg. We used a varying number of standard PCs plus some
(rather small) compute servers, whenever a machine was available. (We did not have access
to a genuine high-performance computer.) In particular, we used our own desktop machines
whenever they were (partially) idle. One of them, an Intel Core i7-6700 CPU clocked at
3.40 GHz, was used to obtain the performance plot of Figure 6, which shows CPU-time
consumptions of several of our tools for Challenge instances with different numbers of points.

Our low-profile way of accessing computers resulted in a highly non-uniform consumption
of computational resources, which in turn had highly non-uniform performance levels, ranging
from 15-year-old compute servers to machines acquired just a year ago. The availability of a
particular machine or of some of its cores was discussed with the operator of that machine on
a day-by-day or week-by-week basis. We set up a database and engineered some scripts that
allowed all machines to fetch problem instances from and send results back to a home base.

Figure 5 The two top figures show initial decompositions generated by OrthoOpt for the
355-vertex instance rop0000355. The bottom left figure shows the best decomposition (with 44
faces) derived from an initial triangulation of rop0000355. The bottom right figure shows our overall
best decomposition (with 36 faces) derived from an initial decomposition generated by OrthoOpt.

COMPUTING LOW-COST CONVEX PARTITIONS

50

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:7

101 102 103 104 105

Points

10−4

10−3

10−2

10−1

100

101

102

R
u

n
ti

m
e

[s
] 3Apx

MergeRefine

3Apx-onion

Recursor

Figure 6 Time needed to obtain one initial decomposition for the competition inputs.

The heterogeneity of (our use of) the computational resources makes it very difficult to
come up with a reliable ball-park figure of the total CPU time consumed. We estimate,
though, that our tools would have kept a standard desktop machine busy for a few years.

3.2 Experimental results
The estimated quality of a specific convex decomposition is based upon its score, where

score := number of edges in convex partition
number of edges in triangulation .

Figure 7 plots the score for the Challenge instance euro-night-0100000 over time. It
reflects the improvements achieved by refining our tools. While we did not generate such
a plot for each and every instance, we did compare sample plots for a few instances: No
significant differences were observed. That is, the plot shown in Figure 7 can be regarded
as representative for the progress that we made on the Challenge instances of the first
batch. The plot shows nicely how Recursor and Flipper interacted. Near the end of the
competition, Recursor and Flipper by themselves rarely found better decompositions.
However, even when a tool did not reduce the total number of faces, it still restructured the
decomposition and uploaded it to our central server, which in turn may have enabled another
tool to find some small improvement. The plot also indicates that each new tool yielded a
substantial improvement at the beginning, with the gains tapering off as time progressed. So,
likely, investing drastically more computational resources than what we had at our disposal
would have hardly led to truly substantial improvements. In our case, the availability of
human resources for devising and implementing new tools was the decisive limiting factor.

The second batch of Challenge instances made it apparent that our heuristics had been
(implicitly) geared towards the inputs that they had to handle. The rop* input class proved
to be particularly challenging for our initial strategy. Therefore, we introduced OrthoOpt

SoCG 2020

COMPUTING LOW-COST CONVEX PARTITIONS

51

85:8 Low-Cost Convex Partitions Based on Tailored Decompositions

0.6

0.8

0.506

0.508

0.510

Nov Dec Jan Feb

0.5041

0.5042

0.5043

0.5044

0.5045

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

3Apx

3Apx-onion

3Apx-onion+partition

MergeRefine

Recursor

Recursor (+ local refinement)

Recursor (+ random edge flips)

Recursor (+ improve on previous decompositions)

Recursor+partition

Flipper

Figure 7 Score over time for euro-night-0100000. Note that the y-axis changes scale twice.

to generate initial decompositions that are tailored towards inputs with lots of dense, grid-
aligned and, thus, collinear points. Figure 8 illustrates the score over time for rop0064054
and ortho_rect_union_47381, which act as representatives for their corresponding input
classes. Apparently, the introduction of OrthoOpt improved our solutions for the rop*
instances, whereas it provided no improvement for the ortho_rect_union* input class.

In Figure 9, we show the scores of the overall best decompositions for various Challenge
instances. Additionally, Figure 10 illustrates the development of the average score over time.
Note that the significant improvement of the average score in mid January is due to the
introduction of Flipper.

4 Conclusion

Our work makes it apparent that well-crafted heuristics run on moderate computing equipment
are good enough to achieve decent minimum convex decompositions. But the second batch of
Challenge instances made it also apparent that heuristics need not be universally applicable.
Rather, they may require an adaption relative to the characteristics of the input data.

COMPUTING LOW-COST CONVEX PARTITIONS

52

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:9

Jan-20 Jan-27 Feb-03 Feb-10

0.34

0.36

0.38

0.40

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Jan-20 Jan-27 Feb-03 Feb-10

0.40

0.45

0.50

0.55

0.60

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Figure 8 Score over time for rop0064054 and ortho_rect_union_47381.

101 102 103 104 105 106

Instance Size

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

euro-night

uniform

us-night

mona-lisa

rop

ortho rect

Figure 9 Score per instance.

SoCG 2020

COMPUTING LOW-COST CONVEX PARTITIONS

53

85:10 Low-Cost Convex Partitions Based on Tailored Decompositions

Nov Dec Jan Feb

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 1

Batch 2

Jan-20 Feb-01 Feb-15
0.3821340

0.3821345

0.3821350

0.3821355

0.3821360

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 2

Dec Jan Feb
0.5389

0.5390

0.5391

0.5392

0.5393

0.5394

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Batch 1

Figure 10 Average score over time.

COMPUTING LOW-COST CONVEX PARTITIONS

54

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:11

References
1 Bernard Chazelle. On the Convex Layers of a Planar Set. IEEE Transactions on Information

Theory, 31(4):509–517, July 1985. doi:10.1109/TIT.1985.1057060.
2 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B.

Mitchell. Computing Convex Partitions for Point Sets in the Plane: The CG:SHOP Challenge
2020, 2020. arXiv:2004.04207.

3 Christian Knauer and Andreas Spillner. Approximation Algorithms for the Minimum Convex
Partition Problem. In Algorithm Theory – SWAT 2006, pages 232–241, 2006.

4 Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering,
volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996.
ISBN 3-540-61785-X.

SoCG 2020

COMPUTING LOW-COST CONVEX PARTITIONS

55

AN EFFICIENT, PRACTICAL ALGORITHM AND

IMPLEMENTATION FOR COMPUTING

MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

Martin Held and Stefan de Lorenzo [HL20]

Published in:
Proceedings of the 28th Annual European Symposium on Algorithms (ESA 2020)

Aug. 2020

[HL20]

Martin Held and Stefan de Lorenzo. “An Efficient, Practical Algorithm and Im-
plementation for Computing Multiplicatively Weighted Voronoi Diagrams”.
In: Proceedings of the 28th Annual European Symposium on Algorithms (ESA 2020).
Vol. 173. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Aug. 2020, 56:1–
56:15. ISBN: 978-3-95977-162-7. DOI: 10.4230/LIPIcs.ESA.2020.56

https://doi.org/10.4230/LIPIcs.ESA.2020.56

An Efficient, Practical Algorithm and
Implementation for Computing Multiplicatively
Weighted Voronoi Diagrams
Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Stefan de Lorenzo
Universität Salzburg, FB Computerwissenschaften, Austria
slorenzo@cs.sbg.ac.at

Abstract
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi
diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be
assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-
Peled&Raichel, Discrete Comput. Geom. 53:547–568, 2015] allows to achieve an expected runtime
complexity of O(n log4 n), while still maintaining the simplicity of our approach. We implemented
the full algorithm for weighted points as input sites, based on CGAL. The results of an experimental
evaluation of our implementation suggest O(n log2 n) as a practical bound on the runtime. Our
algorithm can be extended to handle also additive weights in addition to multiplicative weights, and
it yields a truly simple O(n log n) solution for solving the one-dimensional version of this problem.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Voronoi Diagram, multiplicative weight, additive weight, arc expansion,
overlay arrangement, implementation, experiments, CGAL, exact arithmetic

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.56

Related Version A full version of this paper is available at [9], https://arxiv.org/abs/2006.14298.

Supplementary Material The source code of our implementation is available at GitHub and can be
used freely under the GPL(v3) license: https://github.com/cgalab/wevo.

Funding Work supported by Austrian Science Fund (FWF): Grant P31013-N31.

1 Introduction

The multiplicatively weighted Voronoi diagram (MWVD) was introduced by Boots [4].
Aurenhammer and Edelsbrunner [2] present a worst-case optimal incremental algorithm for
constructing the MWVD of a set of n points in O(n2) time and space. They define spheres on
the bisector circles (that are assumed to be situated in the xy-plane) and convert them into
half-planes in R3 using a spherical inversion. Afterwards, these half-planes are intersected.
Thus, every Voronoi region is associated with a polyhedron. Finally, the intersection of
every such polyhedron with a sphere that corresponds to the xy-plane is inverted back to R2.
We are not aware of an implementation of their algorithm, though. (And it seems difficult
to implement.) In any case, the linear-time repeated searches for weighted nearest points
indicate that its complexity is Θ(n2) even if the combinatorial complexity of the resulting
Voronoi diagram is o(n2). Later Aurenhammer uses divide&conquer to obtain an O(n logn)
time and O(n) space algorithm for the one-dimensional weighted Voronoi diagram [1].

© Martin Held and Stefan de Lorenzo;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

59

56:2 Computing Multiplicatively Weighted Voronoi Diagrams

Har-Peled and Raichel [8] show that a bound of O(n log2 n) holds on the expected
combinatorial complexity of a MWVD if all weights are chosen randomly. They sketch how to
compute MWVDs in expected time O(n log3 n). Their approach is also difficult to implement
because it uses the algorithm by Aurenhammer and Edelsbrunner [2] as a subroutine.

Vyatkina and Barequet [13] present a wavefront-based strategy to compute the MWVD
of a set of n lines in the plane in O(n2 logn) time. The Voronoi nodes are computed based
on edge and break-through events. An edge event takes place when an wavefront edge
disappears. A break-through event happens whenever a new wavefront edge appears.

Since the pioneering work of Hoff et al. [10] it has been well known that discretized
versions of Voronoi diagrams can be computed using the GPU framebuffer. More recently,
Bonfiglioli et al. [3] presented a refinement of this rendering-based approach. It is obvious
that their approach could also be extended to computing approximate MWVDs. However,
the output of such an algorithm is just a set of discrete pixels instead of a continuous skeletal
structure. Its precision is limited by the resolution of the framebuffer and by the numerical
precision of the depth buffer.

2 Our Contribution

Our basic algorithm allows us to compute MWVDs in worst-case O(n2 logn) time and O(n2)
space. A refined version makes use of the result by Har-Peled and Raichel [8]: We use their
overlay arrangement to keep the expected runtime complexity bounded by O(n log4 n) if the
point sites are weighted randomly. Hence, for the price of a multiplicative factor of logn we
get an algorithm that is easier to implement. Our experiments suggest that this bound is
too pessimistic in practice and that one can expect the actual runtime to be bounded by
O(n log2 n). However, our experiments also show that one may get a quadratic runtime if
the weights are not chosen randomly. Our algorithm does not require the input sites to have
different multiplicative weights, and it can be extended to additive weights and to (disjoint)
straight-line segments as input sites. Furthermore, it yields a truly simple O(n logn) solution
for computing MWVDs in one dimension, where all input points lie on a line.

Our implementation is based on exact arithmetic and the Computational Geometry
Algorithms Library (CGAL) [12]. It is publicly available on GitHub under https://github.
com/cgalab/wevo. To the best of our knowledge, this is the first full implementation of an
algorithm for computing MWVDs that achieves a decent expected runtime complexity.

3 Preliminaries

Let S := {s1, s2, . . . , sn} denote a set of n distinct weighted points in R2 that are indexed
such that w(si) ≤ w(sj) for 1 ≤ i < j ≤ n, where w(si) ∈ R+ is the weight associated
with si. It is common to regard the weighted distance dw(p, si) from an arbitrary point
p in R2 to si as the standard Euclidean distance d(p, si) from p to si divided by the
weight of si, i.e., dw(p, si) := d(p,si)

w(si) . The (weighted) Voronoi region VRw(si, S) of si
relative to S is the set of all points of the plane such that no site sj in S \ {si} is closer
to p than si, that is, VRw(si, S) :=

{
p ∈ R2 : dw(p, si) ≤ dw(p, sj) for all j ∈ {1, 2, . . . , n}

}
.

Then the multiplicatively weighted Voronoi diagram (MWVD), VDw(S), of S is defined as
VDw(S) :=

⋃
si∈S ∂ VRw(si, S).

A connected component of a Voronoi region is called a face. For two distinct sites si and
sj of S, the bisector bi,j of si and sj models the set of points of the plane that are at the
same weighted distance from si and sj . Hence, a non-empty intersection of two Voronoi

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

60

M. Held and S. de Lorenzo 56:3

regions is a subset of the bisector of the two defining sites. Following common terminology,
a connected component of such a set is called a (Voronoi) edge of VDw(S). An end-point
of an edge is called a (Voronoi) node. It is known that the bisector between two unequally
weighted sites forms a circle1. An example of a MWVD is shown in Figure 1.

23
22

21

20

19

16

14

13

10

7

Figure 1 Left: The numbers next to the points indicate their weights and the corresponding
MWVD is shown. Right: Wavefronts (in blue) for equally-spaced points in time.

The wavefront WF(S, t) emanated by S at time t ≥ 0 is the set of all points p of the
plane whose minimal weighted distance from S equals t. More formally,

WF(S, t) :=
{
p ∈ R2 : min

si∈S
dw(p, si) = t

}
.

The wavefront consists of circular arcs which we call wavefront arcs. A common end-point of
two consecutive wavefront arcs is called wavefront vertex; see the blue dots in Figure 1.

4 Offset Circles

For the sake of descriptional simplicity, we start with assuming that no point in the plane has
the same weighted distance to more than three sites of S. For t ≥ 0, the offset circle ci(t) of
the i-th site si is given by a circle centered at si with radius t · w(si). We find it convenient
to regard ci(t) as a function of either time or distance since at time t every point on ci(t) is
at Euclidean distance t ·w(si) from si, i.e., at weighted distance t. We specify a point of ci(t)
relative to si by its polar angle α and its (weighted) polar radius t and denote it by pi(α, t).

For 1 ≤ i < j ≤ n, consider two sites si, sj ∈ S and assume that w(si) 6= w(sj). Then
there exists a unique closed time interval [tminij , tmaxij] during which the respective offset
circles of si, sj intersect. We say that the two offset circles collide at their mutual collision
time tminij , and sj starts to dominate si at the domination time tmaxij . For all other times t
within this interval the two offset circles ci(t) and cj(t) intersect in two disjoint points vli,j(t)
and vri,j(t). These (moving) vertices trace out the bisector between si and sj ; see Figure 2.
Since vli,j(t) and vri,j(t) are defined by the same pair of offset circles we refer to vli,j(t) as the
vertex married to vri,j(t), and vice versa. Every other pair of moving vertices defined by two
different pairs of intersecting offset circles is called unmarried. To simplify the notation, we
will drop the parameter t if we do not need to refer to a specific time. Similarly, we drop the
superscripts l and r if no distinction between married and unmarried vertices is necessary.

1 Apollonius of Perga defined a circle as a set of points that have a specific distance ratio to two foci.

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

61

56:4 Computing Multiplicatively Weighted Voronoi Diagrams

sj

si

sj

si

sj

si

sj

si

Figure 2 Two married vertices (highlighted by the blue dots) trace out the bisector bij (in black).

5 A Simple Event-Based Construction Scheme

In this section we describe a simulation of a propagation of the wavefront WF(S, t) to
compute VDw(S). Since the wavefront is given by a subset of the arcs of the arrangement of
all offset circles, one could attempt to study the evolution of all arcs of that arrangement over
time. However, it is sufficient to restrict our attention to a subset of arcs of that arrangement.
We note that our wavefront can be seen as a kinetic data structure [7].

Clearly, the arc along ci(t) which is inside cj(t) will not belong to WF({si, sj}, t∗) for
any t∗ > t. We will make use of this observation to define inactive and active arcs that are
situated along the offset circles.

I Definition 1 (Active point). A point p on the offset circle ci(t) is called inactive at time
t (relative to S) if there exists j > i, with 1 ≤ i < j ≤ n, such that p lies strictly inside of
cj(t). Otherwise, p is active (relative to S) at time t. A vertex vi,j(t) is an active vertex if
it is an active point on both ci(t) and cj(t) at time t; otherwise, it is an inactive vertex.

I Lemma 2. If pi(α, t) is inactive at time t then pi(α, t′) will be inactive for all times t′ ≥ t.

An inactive point pi(α, t) cannot be part of the wavefront WF(S, t). Lemma 2 ensures
that none of its future incarnations pi(α, t′) can become part of the wavefront WF(S, t′).

I Definition 3 (Active arc). For 1 ≤ i ≤ n and t ≥ 0, an active arc of the offset circle ci(t)
at time t is a maximal connected set of points on ci(t) that are active at time t. The closure
of a maximal connected set of inactive points of ci(t) forms an inactive arc of ci(t) at time t.

Every end-point of an active arc of ci(t) is given by the intersection of ci(t) with some
other offset circle cj(t), i.e., by a moving vertex vi,j(t). This vertex is active, too.

I Definition 4 (Arc arrangement). The arc arrangement (AA) of S at time t, A(S, t), is the
arrangement induced by all active arcs of all offset circles of S at time t.

As time t increases, the offset circles expand. This causes the vertices of A(S, t) to move,
but it will also result in topological changes of the arc arrangement.

I Definition 5 (Collision event). Let pi(α, tminij) = pj(α+π, tminij) be the point of intersection
of the offset circles of si and sj at the collision time tminij , for some fixed angle α. A collision
event occurs between these two offset circles at time tminij if the points pi(α, t) and pj(α+π, t)
have been active for all times 0 ≤ t ≤ tminij .

At the time of a collision a new pair of married vertices vli,j(t) and vri,j(t) is created. Of
course, we have vli,j(tminij) = vri,j(tminij) = pi(α, tminij).

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

62

M. Held and S. de Lorenzo 56:5

I Definition 6 (Domination event). Let pi(α, tmaxij) = pj(α, tmaxij) be the point of intersection
of the offset circles of si and sj at the domination time tmaxij , for some fixed angle α. A
domination event occurs between these two offset circles at time tmaxij if the points pi(α, t)
and pj(α, t) have been active for all times 0 ≤ t ≤ tmaxij .

At the time of a domination event the married vertices vli,j(tmaxij) and vri,j(tmaxij) coincide
and are removed.

I Definition 7 (Arc event). An arc event e occurs at time te when an active arc ai shrinks to
zero length because two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe on ci(te).

Lemma 2 implies that pi(α, t) has been active for all times t ≤ te if pi(α, te) = pe. At
the time of an arc event two unmarried vertices trade their places along an offset circle.
Now suppose that the two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe along
ci(te) at the time te of an arc event, thereby causing an active arc of ci(te) to shrink to
zero length. Hence, the offset circles of si, sj and sk intersect at the point pe at time te. If
cj(t) and ck(t) did not intersect for t < te then we also get a collision event between cj(t)
and ck(t) at time te, see Figure 3a. (This configuration can occur for any relative order of
the weights w(si), w(sj), w(sk).) Otherwise, one or both of the married vertices vlj,k(te) and
vrj,k(te) must also coincide with pe. If both coincide with pe then we also get a domination
event between cj(t) and ck(t) at time te and we have w(sj) < w(sk), see Figure 3b. The
scenarios remaining for the case that only one of vlj,k(te) and vrj,k(te) coincides with pe are
detailed in the following lemma.

vi,j vi,k
pe vi,jvi,k

vj,k

(a)

vi,j

vj,k

vi,k
pe

vj,k

(b)

Figure 3 (a) The configuration shortly before (left) and after (right) a collision event as well as
an arc event occur simultaneously at the same point pe. In the left figure the offset arcs at the time
of the event are shown in gray. Arcs and vertices that are on WF({si, sj , sk}, t) are highlighted in
blue. Other active arcs and vertices are depicted by solid orange lines and filled disks, while inactive
arcs and vertices are depicted by dashed orange lines and circles. (b) The configuration shortly
before and after a domination event and an arc event occur simultaneously at the same point pe.

I Lemma 8. Let i < j < k and consider an arc event such that exactly the three vertices
vi,j(te), vi,k(te), and vj,k(te) coincide at time te. Then either

all three vertices were active before the event, see Figure 4a, or
vi,j and vj,k were active and vi,k was inactive before the event, see Figure 4b, or
vi,k and vj,k were active and vi,j was inactive before the event, see Figure 4c.

We now describe an event-handling scheme that allows us to trace out VDw(S) by
simulating the expansion of the arcs of A(S, t) as t increases, see Figure 5. We refer to this
process as arc expansion.

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

63

56:6 Computing Multiplicatively Weighted Voronoi Diagrams

vi,j

vi,k

vj,k

vi,jvi,k

vj,k
vi,j vi,k

vj,k

vi,j

vi,k
vj,k

(a) The two possible configurations shortly before (shown in the left figures) and after (shown in the right
figures) one active arc disappears on ci(t) if no collision or domination event occurs at the same point.
We get the collapse of all three arcs of an active-arc triangle.

vj,kvi,j

vi,k

vj,k vi,j

vi,k

vj,k

vi,k

vi,j

vi,j

vi,k

vj,k

(b) The two possible configurations shortly before (left) and after (right) one active arc disappears on
cj(t) and another active arc appears on ck(t).

vj,kvi,k

vi,j

vj,k vi,k

vi,j

vi,j

vi,k

vj,k

vi,j

vi,k

vj,k

(c) The two possible configurations shortly before (left) and after (right) one active arc disappears on
ck(t) and another active arc appears on cj(t).

Figure 4 The six different configurations that can occur for arc events for 1 ≤ i < j < k ≤ n.

For each site we maintain a search data structure to keep track of all active arcs during
the arc expansion. This active offset oi of si holds the set of all arcs of ci(t) which are active
at time t sorted in counter-clockwise angular order around si, and supports the following
basic operations in time logarithmic in the number of arcs stored:

It supports the insertion and deletion of active arcs as well as the lookup of their
corresponding vertices.
It supports point-location queries, allowing us to identify that active arc within oi which
contains a query point p on ci(t).

Every active offset contains at most 2(n− 1) vertices and, thus, O(n) active arcs. Hence,
each such operation on an active offset takes O(logn) time in the worst case.

Checking and handling the configurations shown in Figures 3a to 4 can be done by using
only basic operations within the respective active offsets. The events themselves are stored
in a priority queue Q ordered by the time of their occurrence. If two events take place
simultaneously at the same point then collision events are prioritized higher than arc events,
and arc events have to be handled before domination events. Four auxiliary operations are
utilized that allow a more compact description of this process. Each one takes O(logn) time.

The collapse-operation takes place from vi,x to vj,k within an active offset ox, with
x ∈ {j, k}, in which vi,x and vj,k bound an active arc ax that is already part of ox; see
Figure 6a. It determines the neighboring active arc a′x of ax that is bounded (on one
side) by vi,x, deletes ax from ox, and replaces vi,x by vj,k in a′x.

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

64

M. Held and S. de Lorenzo 56:7

Figure 5 A snapshot of the arc expansion for the input shown in Figure 1. Active arcs that are
currently not part of the wavefront are drawn in orange.

The counterpart of the collapse-operation is the expand-operation; see Figure 6b. It
happens from vj,k to vi,x in which vj,k bounds an active arc a′x within ox. The expansion
will either move along a currently inactive or an already active portion of the offset circle
of sx. In the latter case, vj,k is replaced by vi,x in a′x. In any case, we insert the respective
active arc that is bounded by vi,x and vj,k into ox.
A split-operation involves two active offsets oi and oj as well as a point pe which is
situated within the active arcs ai := (vi,s, vi,e) and aj := (vj,s′ , vj,e′) within oi and oj ,
respectively; see Figure 7a. Two married vertices vli,j and vri,j are created. Afterwards
ai and aj are removed from oi and oj , respectively. Two new active arcs (vi,s, vli,j) and
(vri,j , vi,e) are created and inserted into oi. Furthermore, the three active arcs (vj,e, vri,j),
(vri,j , vli,j), and (vli,j , vj,e) are inserted into oj . If ai and aj were wavefront arcs then the
newly created married vertices coincide with wavefront vertices and the newly inserted
active arcs except (vri,j , vli,j) are marked as wavefront arcs.
During a merge-operation, exactly two offset circles interact; see Figure 7b. The active arcs
ai and aj bounded by the two corresponding married vertices vri,j and vli,j are removed
from oi and oj , respectively. Additionally, the active arcs (vj,s, vri,j) and (vli,j , vj,e) that
were adjacent to aj within oj are removed. Finally, a new active arc a′j := (vj,s, vj,e) is
inserted into oj . If aj was a wavefront arc then a′j is also marked as a wavefront arc.

vj,kvi,k
vj,k vi,k

(a)

vj,k

vi,j

vj,k

vi,j

(b)

Figure 6 (a) A collapse-operation from vi,k to vj,k takes place within ok. (b) An expand-operation
happens within oj from vj,k to vi,j .

Domination events and arc events are easy to detect. The point and time of a collision is
trivial to compute for any pair of offset circles, too. Unfortunately there is no obvious way
to identify those pairs of circles for which this intersection will happen within portions of
these offset circles which will still be active at the time of the collision. Hence, for the rest of

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

65

56:8 Computing Multiplicatively Weighted Voronoi Diagrams

vri,j

vli,j

(a)

vri,j

vli,j

(b)

Figure 7 (a) A split-operation happens when at the time of a collision event. (b) A merge-
operation happens at the time of a domination event.

this section we assume that all collisions among all pairs of offset circles are computed prior
to the actual arc expansion. Lemma 9 verifies that our algorithm correctly simulates the arc
expansion.

I Lemma 9. For time t > 0, the arc arrangement A(S, t) can be obtained from A(S, 0) by
modifying it according to all collision events, domination events and arc events that occur
till time t, in the order in which they appear.

If the maximum weight of all sites is associated with only one site then there will be a
time t when the offset circle of this site dominates all other offset circles, i.e., when WF(S, t)
contains only this offset circle as one active arc. Obviously, at this time no further event can
occur and the arc expansion stops. If multiple sites have the same maximum weight then Q
can only be empty once WF(S, t) contains only one loop of active arcs which all lie on offset
circles of these sites and if all wavefront vertices move along rays to infinity.

I Lemma 10. An active arc or active vertex within an active offset is identified and marked
as a wavefront arc (wavefront vertex, resp.) at time t ≥ 0 if and only if it lies on WF(S, t).

If we allow points in R2 to have the same weighted distance to more than three sites
then we need to modify our strategy. In particular, we need to take care of constellations in
which more than three arc events happen simultaneously at the same point. In such a case
it is necessary to carefully choose the sequence in which the corresponding arc events are
handled. More precisely, an arc event may only be handled (without corrupting the state of
the active offsets) whenever the respective active vertices are considered neighboring within
the active offsets. If the active vertices that participate in an arc event are not currently
neighboring then we can always find an arc event whose active vertices are neighboring that
happens simultaneously at the same location by walking along the corresponding active
offsets. By dealing with the arc events in this specific order, we generate multiple coinciding
Voronoi nodes of degree three. Domination events that occur simultaneously at the same
point pe are processed in increasing order of the weights. Note that this order can already be
established at the time when an event is inserted into Q, at no additional computational cost.
Simultaneous multiple collision events at the same point pe either involve arcs that are not
active or coincide with arc events. These arc events automatically establish a sorted order of
the active arcs around pe, thus allowing us to avoid an explicit (and time-consuming) sorting.

I Lemma 11. During the arc expansion O(n2) collision and domination events are computed.

We know that collision events create and domination events remove active vertices (and
make them inactive for good). A collapse of an entire active-arc triangle causes two vertices
to become inactive. During every other arc event at least one active vertex becomes inactive,

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

66

M. Held and S. de Lorenzo 56:9

but at the same time one inactive vertex may become active again. In order to bound the
number of arc events it is essential to determine how many vertices can be active and how
often a vertex can undergo a reactivation, i.e., change its status from inactive to active.
(Note that Lemma 2 is not applicable to a moving vertex since its polar angle does not
stay constant.) We now argue that the total number of reactivations of inactive vertices is
bounded by the number of different vertices that ever were active during the arc expansion.

I Lemma 12. Every reactivation of a moving vertex during an arc event forces another
moving vertex to become inactive and remain inactive for the rest of the arc expansion.

I Lemma 13. Let h be the number of different vertices that ever were active during the arc
expansion. Then O(h) arc events can take place during the arc expansion.

I Theorem 14. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites can be computed in O(n2 logn) time and O(n2) space.

Additionally, in the full version [9] we argue that the one-dimensional MWVD can be
computed efficiently using a wavefront-based strategy.

I Theorem 15. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites in one dimension can be computed in O(n logn) time and O(n) space.

6 Reducing the Number of Collisions Computed

Experiments quickly indicate that the vast majority of pairwise collisions computed a priori
never ends up on pairs of active arcs. Furthermore, the resulting Voronoi diagrams show
a quadratic combinatorial complexity only for contrived input data. We make use of the
following results to determine all collision events in near-linear expected time. Throughout this
section, we assume that for each site si ∈ S the corresponding weight w(si) is independently
sampled from some probability distribution.

Figure 8 The overlay arrangement is generated by inserting the sites ordered by decreasing
weights.

I Definition 16 (Candidate Set). Consider an arbitrary (but fixed) point q ∈ R2, and let s
be its nearest neighbor in S under the weighted distance. Let s′ ∈ S \ {s} be another site.
Since s is the nearest neighbor of q we know that either s has a higher weight than s′ or a

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

67

56:10 Computing Multiplicatively Weighted Voronoi Diagrams

smaller Euclidean distance to q than s′. Thus, one can define a candidate set for a weighted
nearest neighbor of q which consists of all sites s ∈ S such that all other sites in S either
have a smaller weight or a larger Euclidean distance to q.

I Lemma 17 (Har-Peled and Raichel [8]). For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

I Lemma 18 (Har-Peled and Raichel [8]). Let Ki denote the Voronoi cell of si in the un-
weighted Voronoi diagram of the i-th suffix Si := {si, . . . , sn}. Let OA denote the arrangement
formed by the overlay of the regions K1, . . . ,Kn. Then, for every face f of OA, the candidate
set is the same for all points in f .

Figure 8 shows a sample overlay arrangement. Kaplan et al. [11] prove that this overlay
arrangement has an expected complexity of O(n logn). Note that their result is applicable
since inserting the points in sorted order of their randomly chosen weights corresponds to a
randomized insertion. These results allow us to derive better complexity bounds.

I Theorem 19 (Kaplan et al. [11]). The expected combinatorial complexity of the overlay of
the minimization diagrams that arises during a randomized incremental construction of the
lower envelope of n hyperplanes in Rd, for d ≥ 2, is O(nbd/2c), for d even, and O(nbd/2c logn),
for d odd. The bounds for d even and for d = 3 are tight in the worst case.

I Lemma 20. If a collision event occurs between the offset circles of two sites si, sj ∈ S
then there exists at least one candidate set which includes both si and sj.

I Theorem 21. All collision events can be determined in O(n log3 n) expected time by
computing the overlay arrangement OA of a set S of n input sites.

Thus, the number h of vertices created during the arc expansion can be expected to
be bounded by O(n log3 n). Lemma 13 tells us that the number of arc events is in O(h).
Therefore, O(n log3 n) events happen in total.

I Theorem 22. A wavefront-based approach allows to compute the multiplicatively weighted
Voronoi diagram VDw(S) of a set S of n (randomly) weighted point sites in expected
O(n log4 n) time and expected O(n log3 n) space.

7 Extensions

Consider a set S′ of n disjoint weighted straight-line segments in R2. A wavefront propagation
among weighted line segments requires us to refine our notion of “collision”. We call an
intersection of two offset circles a non-piercing collision event if it marks the initial contact
of the two offset circles. That is, it occurs when the first pair of moving vertices appear. We
call an intersection of two offset circles a piercing collision event if it takes place when two
already intersecting offset circles intersect in a third point for the first time; see Figure 9. In
this case, a second pair of moving vertices appear.

Hence, a minor modification of our event-based construction scheme is sufficient to extend
it to weighted straight-line segments; see Figure 10. We only need to check whether a piercing
collision event that happens at a point pe at time te currently is part of WF(S′, te). In such
a case the two new vertices as well as the corresponding active arc between them need to be
flagged as part of WF(S′, te).

An extension to additive weights can be integrated easily into our scheme by simply
giving every offset circle a head-start of wa(si) at time t = 0, where wa(si) ≥ 0 denotes the
real-valued additive weight that is associated with si.

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

68

M. Held and S. de Lorenzo 56:11

Figure 9 An example of a non-piercing (left) as well as a piercing collision event (right).

Figure 10 The MWVD of a set of weighted points and weighted straight-line segments together
with a family of wavefronts for equally-spaced points in time.

8 Experimental Evaluation

We implemented our full algorithm for multiplicatively weighted points as input sites2, based
on CGAL and exact arithmetic3. In particular, we use CGAL’s Arrangement_2 package
for computing the overlay arrangement and its Voronoi_diagram_2 package for computing
unweighted Voronoi diagrams. The computation of the MWVD itself utilizes CGAL’s
Exact_circular_kernel_2 package which is based on the Gmpq number type. The obvious
advantage of using exact number types is that events are guaranteed to be processed in the
right order even if they occur nearly simultaneously at nearly the same place. One of the
main drawbacks of exact number types is their memory consumption which is significantly
(and sometimes unpredictably) higher than when standard floating-point numbers are used.

We used our implementation for an experimental evaluation and ran our code on over
8000 inputs ranging from 256 vertices to 500 000 vertices. For all inputs all weights were
chosen uniformly at random from the interval [0, 1]. All tests were carried out with CGAL 5.0
on an Intel Core i9-7900X processor clocked at 3.3 GHz.

2 We do also have a prototype implementation that handles both weighted points and weighted straight-line
segments. It was used to generate Figure 10.

3 We have not spent enough time on fine-tuning an implementation based on conventional floating-point
arithmetic. The obvious crux is that inaccurately determined event times (and locations) may corrupt
the state of the arc arrangement and, thus, cause a variety of errors during the subsequent arc expansion.

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

69

56:12 Computing Multiplicatively Weighted Voronoi Diagrams

102 103 104 105

Input size

40

60

80

100

120

140

R
u

n
ti

m
e/
n

lo
g

2
n

102 103 104 105

Input size

20

40

60

80

100

R
u

n
ti

m
e/
n

lo
g

2
n

(a) Left: The overall runtime results for inputs with randomly generated weights and point coordinates.
Right: The runtime consumed by the computation of the corresponding overlay arrangements. All runtimes
were divided by n log2 n.

102 103 104 105

Input size

40

60

80

100

120

140

R
u

n
ti

m
e/
n

lo
g

2
n

(b) The overall runtime results for inputs with randomly generated weights and vertices of real-world
polygons and polygons of the Salzburg database of polygonal data [5, 6] taken as input points. The
runtimes were divided by n log2 n.

102 103 104 105

Input size

2.0

2.2

2.4

2.6

2.8

3.0

#
E

v
en

ts
/
n

lo
g
n

102 103 104 105

Input size

9

10

11

12

13

#
E

v
en

ts
/
n

(c) The left plot shows the total number of (valid and invalid) collision events (divided by n log n); the
right plot shows the number of arc events (divided by n) processed during the arc expansion. All point
coordinates and weights were generated randomly.

Figure 11 Experimental evaluation.

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

70

M. Held and S. de Lorenzo 56:13

In any case, the number of events is smaller than predicted by the theoretical analysis.
This is also reflected by our runtime statistics: In Figures 11a and 11b the runtime that was
consumed by the computation of a MWVD is plotted. We ran our tests on two different
input classes: The point locations were either generated randomly, i.e., they were chosen
according to either a uniform or a normal distribution, or obtained by taking the vertices of
real-world polygons or polygons of the brand-new Salzburg database of polygonal data [5, 6].
Summarizing, our tests suggest an overall runtime of O(n log2 n) for both input classes. In
particular, the actual geometric distribution of the sites does not have a significant impact on
the runtime if the weights are chosen randomly: For real-world, irregularly distributed sites
the runtimes are scattered more wildly than in the case of uniformly distributed sites, but
they do not increase. The numbers of collision events and arc events that occurred during
the arc expansion are plotted in Figure 11c. Our tests suggest that we can expect to see
at most 3n logn collision events and at most most 14n arc events to occur. Note that the
number of arc events forms an upper bound on the number of Voronoi nodes of the final
MWVD. That is, random weights seem to result in a linear combinatorial complexity of the
MWVD.

It is natural to ask how much these results depend on the randomness of the weights. To
probe this question we set up a second series of experiments: We sampled points uniformly
within a square with side-length

√
2 and then tested different weights. Let d(s) be the distance

of the site s ∈ S from the center of the square, and let r(s) be a number uniformly distributed
within the interval [0, 1]. Of course, 0 ≤ d(s) ≤ 1. Then we assign α·d(s)+β·r(s)/(α+β) as weight
to s, with α and β being the same arbitrary but fixed non-negative numbers for all sites of S.
Figure 12 shows the results obtained for the same sets of points and the (α, β)-pairs (1, 0),
(9, 1), (7, 3), (1, 1) and (0, 1). This test makes it evident that the bounds on the complexities
need not hold if the weights are not chosen randomly, even for a uniform distribution of
the sites. Rather, this may lead to a linear number of candidates per candidate set and a
quadratic runtime complexity, as shown in Figure 12.

102 103 104

Input size

0

50

100

150

200

A
v
g
.

ca
n

d
id

a
te

se
t

si
ze

Non-random

9:1

7:3

1:1

Random

102 103 104

Input size

106

107

108

109

1010

R
u

n
ti

m
e

Non-random

9:1

7:3

1:1

Random

Figure 12 The plots show how the average number of candidates (left) and the total runtime
(right) depend on the weights assigned to the sites. Each marker on the x-axes indicates the number
n of input sites uniformly distributed within a square.

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

71

56:14 Computing Multiplicatively Weighted Voronoi Diagrams

9 Conclusion

We present a wavefront-like approach for computing the MWVD of points and straight-line
segments. Results by Kaplan et al. [11] and Har-Peled and Raichel [8] allow to predict an
O(n log4 n) expected time complexity for point sites with random weights. We also discuss a
robust, practical implementation which is based on CGAL and exact arithmetic. Extensive
tests of our code indicate an average runtime of O(n log2 n) if the sites are weighted randomly.
To the best of our knowledge, there does not exist any other code for computing MWVDs
that is comparatively fast. A simple modification of our arc expansion scheme makes it
possible to handle both additive and multiplicative weights simultaneously. Our code is
publicly available on GitHub under https://github.com/cgalab/wevo. Figure 13 shows
several examples of MWVDs computed by our implementation.

Figure 13 Several examples of MWVDs are shown in the top figures. The bottom figures illustrate
a series of uniformly distributed wavefronts that have been derived from the corresponding MWVDs.

References
1 Franz Aurenhammer. The One-Dimensional Weighted Voronoi Diagram. Information Pro-

cessing Letters, 22(3):119–123, 1986. doi:10.1016/0020-0190(86)90055-4.
2 Franz Aurenhammer and Herbert Edelsbrunner. An Optimal Algorithm for Constructing

the Weighted Voronoi Diagram in the Plane. Pattern Recognition, 17(2):251–257, 1984.
doi:10.1016/0031-3203(84)90064-5.

3 Rudi Bonfiglioli, Wouter van Toll, and Roland Geraerts. GPGPU-Accelerated Construction
of High-Resolution Generalized Voronoi Diagrams and Navigation Meshes. In Proceedings
of the Seventh International Conference on Motion in Games, pages 26–30, 2014. doi:
10.1145/2668084.2668093.

4 Barry N. Boots. Weighting Thiessen Polygons. Economic Geography, 56(3):248–259, 1980.
doi:10.2307/142716.

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

72

M. Held and S. de Lorenzo 56:15

5 Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. On
Generating Polygons: Introducing the Salzburg Database. In Proceedings of the 36th European
Workshop on Computational Geometry, pages 75:1–75:7, March 2020.

6 Computational Geometry and Applications Lab Salzburg. Salzburg Database of Geometric
Inputs. https://sbgdb.cs.sbg.ac.at/, 2020.

7 Leonidas Guibas. Kinetic Data Structures. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications, pages 23.1–23.18. Chapman and Hall/CRC,
2001. ISBN 9781584884354.

8 Sariel Har-Peled and Benjamin Raichel. On the Complexity of Randomly Weighted Mul-
tiplicative Voronoi Diagrams. Discrete & Computational Geometry, 53(3):547–568, 2015.
doi:10.1007/s00454-015-9675-0.

9 Martin Held and Stefan de Lorenzo. An Efficient, Practical Algorithm and Implementation
for Computing Multiplicatively Weighted Voronoi Diagrams, 2020. arXiv:2006.14298.

10 Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast
Computation of Generalized Voronoi Diagrams using Graphics Hardware. In Proceedings
of the the 26th Annual International Conference on Computer Graphics and Interactive
Techniques, pages 277–286. ACM Press/Addison-Wesley Publishing Co., 1999. doi:10.1145/
311535.311567.

11 Haim Kaplan, Edgar Ramos, and Micha Sharir. The Overlay of Minimization Diagrams in a
Randomized Incremental Construction. Discrete & Computational Geometry, 45(3):371–382,
2011. doi:10.1007/s00454-010-9324-6.

12 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition,
2019. URL: https://doc.cgal.org/5.0/Manual/packages.html.

13 Kira Vyatkina and Gill Barequet. On Multiplicatively Weighted Voronoi Diagrams for
Lines in the Plane. Transactions on Computational Science, 13:44–71, 2011. doi:10.1007/
978-3-642-22619-9_3.

ESA 2020

EFFICIENT MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAMS

73

WEIGHTED SKELETAL STRUCTURES FOR COMPUTING VARIABLE-
RADIUS OFFSETS

Martin Held and Stefan de Lorenzo [HL21]

Published in:
Computer-Aided Design and Applications

Jan. 2021

[HL21]

Martin Held and Stefan de Lorenzo. “Weighted Skeletal Structures for Com-
puting Variable-Radius Offsets”. In: Computer-Aided Design and Applications
18.5 (Jan. 2021), pp. 875–889. DOI: 10.14733/cadaps.2021.875-889

https://doi.org/10.14733/cadaps.2021.875-889

875

Weighted Skeletal Structures For Computing Variable-Radius Offsets

Martin Held1 , Stefan de Lorenzo2

1University of Salzburg, held@cs.sbg.ac.at
2University of Salzburg, slorenzo@cs.sbg.ac.at

Corresponding author: Stefan de Lorenzo, slorenzo@cs.sbg.ac.at

Abstract. Held et al. [CAD&A 2016] introduced generalized weighted Voronoi diagrams
as a tool to construct variable-radius offsets. We revisit this structure and provide two
algorithms to compute it. We also introduce variable-radius skeletons of polygons as a closely
related structure which inherits most properties of generalized weighted Voronoi diagrams
except that its skeletal regions are always connected. Experimental results obtained by
our implementation of variable-radius skeletons are discussed. In addition to variable-radius
offsets we demonstrate how this structure can be used to generate intricate roofs for polygonal
footprints of buildings in an automated way.

Keywords: Voronoi diagram, multiplicative weight, wavefront propagation, variable-radius
skeleton, variable-radius offsets
DOI: https://doi.org/10.14733/cadaps.2021.875-889

1 Introduction

Offsetting is an essential task in many industrial applications. In conventional constant-radius offsetting all
parts of the input set expand or shrink uniformly at the same speed. A natural extension of this idea is to allow
parts to expand or shrink in a non-uniform manner. Among other fields, such so-called variable-radius offsets
find applications in brush-stroke modeling and the generation of ornamental seams. See Figure 1 for sample
constant-radius and variable-radius offsets of a set of straight-line segments that are arranged in a star-like
fashion. In the sequel we present skeletal structures that support the computation of variable-radius offsets.

Consider a set S∗ of n points in the plane. The Voronoi diagram VD(S∗) of S∗ partitions the plane
into interior-disjoint, convex areas — so-called Voronoi regions — such that the Voronoi region VR(s, S∗) of
s ∈ S∗ contains all points of the plane that are closer to s under the Euclidean distance metric than to any
other point of S∗; see Figure 2a. It is well-known that VD(S∗) has O(n) nodes and (straight-line) edges. In
the well-known prairie-fire analogy, VD(S∗) is given by those points of the plane where fire waves meet

• if fires are ignited simultaneously at all points of S∗, and

• if all fires spread uniformly at the same speed.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

77

876

(a) (b)

Figure 1: A family of constant-radius and variable-radius offsets (in blue) of straight-line segments (in black).

These fire waves form instances of (constant-radius) offset curves of the points of S∗ for specific offset
distances; see Figure 2b. In the field of computational geometry, offset curves are known as wavefronts, and
a simulation of the wavefronts for steadily increasing offset distances is called wavefront propagation.

(a) (b)

Figure 2: (a) Voronoi diagram and (b) a family of wavefronts for a set of points. Each Voronoi region is
indicated by a colored area.

In more formal terms,
VD(S∗) :=

⋃

s∈S∗

∂VR(s, S∗),

where
VR(s, S∗) := {p ∈ R2 : d(p, s) ≤ d(p, S∗)},

and ∂VR(s, S∗) denotes the boundary of VR(s, S∗). Lots of generalizations of the standard Voronoi diagram
have been studied. See, e,g., generalizations in terms of dimensionality [7], the types of permissible input
objects [10], and distance metric [14].

Another way to generalize Voronoi diagrams is to assign multiplicative positive weights to the points of S∗

and to let them influence the expansion speeds of the wavefronts. This yields the multiplicatively weighted
Voronoi diagram of S∗; see Figure 3a. More formally, the weighted distance dw(p, s) between a point p ∈ R2

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

78

877

90

35
60

95

52 80

82

33

10

66

40

21

(a)

90

35
60

95

52 80

82

33

10

66

40

21

(b)

Figure 3: (a) The multiplicatively weighted Voronoi diagram and (b) corresponding family of wavefronts for a
set of weighted points. The multiplicative weights are written next to the points; their positions are identical
to the positions shown in Figure 2a.

and a weighted point s ∈ S∗ is defined as

dw(p, s) :=
d(p, s)

w(s)
,

where d(p, s) denotes the standard Euclidean distance between p and s, and w(s) is the positive weight of s.
Hence, the larger the weight of a point the quicker its fire wavefront spreads.

Held et al. [12] generalize this concept and introduce the generalized weighted Voronoi diagram (GWVD)
of a set S of weighted points and variably-weighted straight-line segments: They assign weights to the end-
points a and b of an input segment ab and then obtain the weight of a point q on ab by a linear interpolation
of the weights of a and b. Then

dw(p, ab) := min
q∈ab

dw(p, q),

and the corresponding GWVD VDw(S) is defined accordingly. See Figure 4 for a sample GWVD and corre-
sponding wavefronts, i.e., variable-radius offsets. We note that even simple differences in the weights may have
a significant impact. For instance, the variable-radius offsets shown in Figure 1b were achieved by assigning
all other end-points twice the weight of the center point.

2 Our Contribution

We start with examining the generalized weighted Voronoi diagram (GWVD) in more detail: We define an
explicit distance function between an arbitrary point in the plane and a variably-weighted straight-line segment.
Additionally, two different strategies to compute the GWVD are outlined.

Since the individual Voronoi regions of a GWVD may be disconnected, we introduce a closely related
structure whose regions stay connected. We call this structure a variable-radius skeleton (VRS), present an
algorithm for computing a VRS inside of a polygon, and discuss results obtained by our prototype implemen-
tation.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

79

878

90

35
60

95

52 80

82

33

10

66

40

21

(a)

90

35
60

95

52 80

82

33

10

66

40

21

(b)

Figure 4: (a) Generalized weighted Voronoi diagram of a set of weighted points and straight-line segments
(highlighted in black) and (b) family of corresponding wavefronts. All points have the same positions and
weights as in Figure 3a.

3 Preliminaries

Let S be a set of weighted points and variably-weighted straight-line segments. All multiplicative weights are
required to be positive. (Biedl et al. [5] show that a weighted skeletal structure may lose virtually all important
properties of its unweighted sibling if negative weights are allowed.) No input point is allowed to lie on a line
segment, and no pair of line segments may share a point except for a common end-point. All input segments
and input points are called sites. For the sake of descriptional simplicity, it is assumed that no point in R2 has
the same weighted distance to more than three sites of S.

Every input site s ∈ S is associated with a so-called offset circle c(s, t) which includes all points in R2 that
are at weighted distance t to s. We find it convenient to regard c(s, t) as a function of either time or distance
since at time t every point on c(s, t) is at Euclidean distance t · w(s) from s, i.e., at weighted distance t. As
discussed in [12], the offset circle c(ab, t) of a straight-line segment ab is formed by two circular arcs, which
are induced by its end-points a and b, and two straight-line segments; see Figure 5c. (Of course, the offset
circle of a variably-weighted straight-line segment is no genuine circle but we prefer to use the same term for
the offsets of both points and straight-line segments.) A similar result holds for the offset circle of a circular
arc if identical weights are assigned to its end-points.

The wavefront W(S, t) emanated by S at time t ≥ 0 is the set of all points p of the plane whose minimal
weighted distance from S equals t. More formally,

W(S, t) :=

{
p ∈ R2 : min

s∈S
dw(p, s) = t

}
.

Hence, for t = 0 the wavefront W(S, t) equals S. All wavefronts consist of portions of offset circles and,
thus, consist only of straight-line segments and circular arcs. Every such wavefront edge is associated with its
corresponding input site. A common end-point of two adjacent wavefront edges is called a wavefront vertex.
Similar to standard Voronoi diagrams and straight skeletons [16], the wavefront vertices will trace out the
edges of our skeletal structures. That is, they move along the bisectors of pairs of input sites (relative to the
weighted distance).

Consider two sites s1, s2 ∈ S and assume that their offset circles intersect. If s1 and s2 both are weighted
points then their offset circles intersect in exactly one pair of points, which we call moving intersections. (These

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

80

879

p

q

(a)

p

q

(b)

p

q

p′

(c)

Figure 5: In (a) and (b) the collision and domination points, respectively, of two offset circles that are
emanated by two weighted points p and q are displayed for w(p) < w(q). In (c) p and q are the end-points of
a variably-weighted straight-line segment pq. The singular point p′ of pq is indicated by a small black circle.
The circular boundaries of the corresponding areas of influence are shown in dark green, and AOI(p̃q) is
shaded in light green.

points may coincide, though.) Otherwise, the offset circles may define up to two pairs of moving intersections.
Every such a moving intersection traces out a part of the bisector b(s1, s2) of s1 and s2. These traces are
non-overlapping (except possibly for the respective start- or end-points) and their union equals b(s1, s2). We
say that c(s1, t) and c(s2, t) collide at time t if a pair of moving intersections appears for the first time at time
t. If a pair of moving intersections disappears at time t then c(s1, t) dominates c(s2, t) at t; see Figure 5.

To avoid two-dimensional bisectors between two variably-weighted straight-line segments that share a
common end-point, we adapt Held’s concept of areas of influence [11]: Every variably-weighted straight-line
segment pq induces a subdivision of the plane into three areas which we denote by AOI(p), AOI(q), and
AOI(p̃q), respectively, where p̃q is the open straight-line segment between p and q, i.e., pq without its end-
points. Each area of influence includes the points of R2 that are closest to the corresponding portion of pq. If
w(p) < w(q) then the areas of influence are bounded by two circles that touch in a single point p′ which we
refer to as singular point; see Figure 5c. Note that p′ coincides with the point at which q starts to dominate
p. If w(p) = w(q) then the areas of influence are bounded by two lines that are perpendicular to pq and run
through p and q.

4 Generalized Weighted Voronoi Diagrams

Algorithmic paradigms such as plane sweep [6] and incremental construction [15], which have been used
extensively for computing Voronoi diagrams of unweighted as well as constantly weighted input sites, seem
inapplicable for computing GWVDs. This is due to two main reasons. First of all, the individual Voronoi
regions of a GWVD are (in general) not connected; see also Figure 6. Furthermore, it is (in general) not
possible to establish an insertion order (s1, s2, . . . , sn) of the elements of S such that the Voronoi region
VRw(si, Si) of the i-th site si in the Voronoi diagram VDw(Si) of the i-th prefix set Si := (s1, s2, . . . , si)
stays connected for all i ∈ {1, 2, . . . , n}. Therefore, we focus on two avenues for computing GWVDs that are
more resilient to the inherent properties of this structure.

Edelsbrunner and Seidel [7] establish the connection between Voronoi diagrams in Rd and lower envelopes
in Rd+1. Agarwal et al. [3] present an algorithm for computing the lower envelope of a set of n algebraic
bivariate functions in O(n2+ε) time1, for any ε > 0. In order to employ this result we need to define an
algebraic bivariate function that models the distance of a point to a specific input site, i.e., to a weighted
point or straight-line segment. If 0 < w(a) = w(b) then the distance from a point p ∈ R2 to the straight-line

1A term of the form k + ε means that there is some additive positive constant ε that needs to be added to k that may be
regarded as arbitrarily small but it will never equal zero.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

81

880

(a) (b)

(c) (d)

Figure 6: (a) GWVD and (b) corresponding wavefronts inside a polygon P where the node indicated by a
square has three times the weight of all other nodes. Note that the Voronoi region of the “square” node
consists of four connected components shown in red. (c) VRS and (d) corresponding wavefronts.

segment ab is simply given by d(p, ab)/w(a). Otherwise, assume that 0 < w(a) < w(b). For the sake of
mathematical simplicity we further assume that ab lies on the positive x-axis such that the singular point a′

coincides with the coordinate origin. The closest weighted point ψp
(
ab
)
of p on ab is given as

ψp
(
ab
)

:=





a p ∈ AOI(a),

b p ∈ AOI(b),(
x2+y2

x , 0
)

otherwise.

This gives us
dw(p, ab) := dw(p, ψp

(
ab
)
)

as the weighted distance dw(p, ab) between p and ab. Of course, every weighted straight-line segment can
be aligned easily with the x-axis such that its singular point coincides with the origin. Thus, every input site
is associated with an algebraic bivariate distance function. Held et al. [12] argue that the graph of such a
distance function is a sub-surface of a right conoid.

Lemma 4.1 summarizes the fact that the general-purpose strategy of Agarwal et al. [3] can be utilized
to compute GWVDs. Lemma 4.2 and Lemma 4.3 establish upper and lower bounds, respectively, on the
combinatorial complexity of a GWVD in the worst case.

Lemma 4.1. The GWVD VDw(S) of a set S of n weighted points and variably-weighted straight-line segments
as input sites can be computed in O(n2+ε) time, for any ε > 0.

Lemma 4.2. The GWVD VDw(S) of a set S of n input sites has a combinatorial complexity of O(n2+ε) in
the worst case, for any ε > 0.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

82

881

Proof. This bound is derived from the combinatorial complexity of the corresponding lower envelope.

Lemma 4.3. The GWVD VDw(S) of a set S of n input sites has a combinatorial complexity of Ω(n2) in the
worst case.

Proof. The multiplicatively weighted Voronoi diagram of points has a combinatorial complexity of Ω(n2) in
the worst case [4].

Even though lifting a problem to higher dimensions can be enlightening from a theoretical point of view,
experience tells us that it often complicates matters when it comes to developing a practical implementation.
And, indeed, the proof-of-concept implementation by Held et al. [12] that is based on this approach cannot
go beyond tiny input sets. (And this limitation would hardly go away if their code were tuned for speed.)

Hence, we discuss an alternative wavefront-based strategy that operates entirely in the plane. Recall that
the wavefront W(S, t) equals S for t = 0. Starting at t = 0, the expansion of the wavefront W(S, t) is
simulated by continuously increasing the time (or weighted distance) t. We do already know that W(S, t)
consists of (possibly multiple) closed curvilinear chains, for all t ≥ 0. If all segments of S are disjoint then, for
a sufficiently small time t0, the wavefront W(S, t0) consists of exactly two straight-line segments per input
segment and of up to one circular arc per input point or end-point of a segment.

It is obvious that the vertices of W(S, t) change their positions as t is increased. During the wavefront
propagation process, we keep track of these moving intersections. However, a change of the locations of the
wavefront vertices is not the only change that will happen. Rather, new wavefront edges may appear, old
wavefront edges may disappear, and the wavefront may split into two or more connected wavefront components.
These combinatorial changes are witnessed by the following three types of events.

Definition 4.1 (Collision event). A collision event occurs whenever a new pair of moving intersections appears.

Definition 4.2 (Domination event). A domination event occurs whenever a pair of moving intersections
disappears.

Definition 4.3 (Arc event). An arc event occurs whenever two moving intersections coincide along an offset
circle in such a way that this constellation can be neither categorized as a collision nor as a domination event.

An arc event may cause a wavefront edge to shrink to zero length and, thus, to disappear. As in the
case of standard Voronoi diagrams, a new Voronoi node has been discovered whenever an old wavefront edge
disappears or a new wavefront edge appears.

Every offset circle c(s, t) holds the set of moving intersections at time t sorted in counter-clockwise angular
order around the respective site in a self-balancing binary search-tree. In particular, it stores those portions of
c(s, t) which overlap withW(S, t). Furthermore, every moving intersection holds a flag that indicates whether
it is a wavefront vertex. Initially, all collision and domination events are computed and inserted into a priority
queue Q. All offset circles are initially empty. Afterwards, all events are successively retrieved from Q.

• If a collision or domination event occurs at time tσ then a pair of moving intersections is inserted or
removed, respectively, from their corresponding offset circles. If a collision event takes place onW(S, tσ)
then the newly created moving intersections are marked to be wavefront vertices.

• If an arc event takes place then three offset circles coincide at a single point. A Voronoi node has been
discovered if at least one of the respective moving intersections has been a wavefront vertex.

Common to all these events is the necessity to compute and store a future arc event whenever two moving
intersections become neighbors along an offset circle. The wavefront propagation is active until the highest-
weighted input point dominates all other input sites. If multiple sites have the same maximum weight then Q
can only be empty once W(S, t) contains only one loop of wavefront segments which all lie on offset circles
of these sites and if all wavefront vertices move along rays to infinity.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

83

882

Theorem 4.1. Wavefront propagation allows to compute VDw(S) in O(n3 log n) time and O(n3) space.

Proof. Every pair of input sites defines at most constantly many collision and domination events and at most
O(n3) arc events may take place. Each of these events consumes O(log n) time, since every event requires a
constant number of lookups, insertions, and/or deletions in a self-balancing binary search tree of size O(n) or
in a priority queue of size O(n3).

We emphasize that the bound O(n3) on the number of arc events is a trivial upper bound given by the fact
that every triple of offset circles can define only a constant number of arc events. Unfortunately, no sharper
bound on the number of arc events is known even just for weighted point sites.

5 Variable-Radius Skeleton

Assume that the weighted points and straight-line segments of S form the vertices and edges of a polygon P .
We call a vertex v reflex (convex) if the interior angle at v is greater (smaller, resp.) than 180°. (For the sake
of descriptional simplicity we assume that no interior angle equals 180°.) Recall that a (positive) weight w(v)
is assigned to every vertex v. A vertex is dominant if its weight is greater than the weight of one of its two
neighbors.

Let A denote (the closure of) the area bounded by P . We now explain how we obtain a Voronoi-like
structure within A that we named variable-radius skeleton (VRS), Sw(P); see Figure 6. Similar to a Voronoi
diagram, it subdivides the interior of P into several skeletal regions, with at most one region SRw(s, S) per
edge s or vertex s, for all s ∈ S. However, unlike the GWVD, which may be defined based on an explicit
distance function, we rely on a purely wavefront-based definition to specify the VRS such that the following
two properties hold:

• For every s ∈ S its skeletal region SRw(s, S) is connected (or empty).

• A point p lies in SRw(s, S) if and only if s ∈ S is the closest site for which there exists a path γ within
A from p to s such that the weighted distance decreases strictly monotonically as one moves from p to
s along γ.

We will be using a slightly different type of wavefront than in the case of the GWVD. To make this
distinction more clear we refer to this new wavefront as the extinguishing wavefront EW(P, t) of P at time
t. For t := 0 we have EW(P, t) = P , i.e., the extinguishing wavefront coincides with P . For a sufficiently
small time t0, a counter-clockwise traversal of EW(P, t0) will match a counter-clockwise traversal of P such
that every straight-line segment of EW(P, t0) corresponds to exactly one edge of P and every circular arc of
EW(P, t0) corresponds to exactly one reflex vertex of P , and vice versa.

As in the case of a GWVD, the expansion of the wavefront EW(P, t) is simulated by continuously increasing
the time (or weighted distance) t. We know that wavefronts are formed by (possibly several) closed curvilinear
chains that consist of straight-line segments and circular arcs as wavefront edges. The key difference to the
standard wavefront propagation is given by the fact that parts of the wavefront extinguish each other once
they collide. In the prairie fire analogy, this means that even a rapidly expanding fire front stops expanding
once it reaches an area of A that had already been burnt by another fire. The combinatorial changes that
EW(P, t) can undergo are witnessed by the following three types of events; see Figure 7.

Definition 5.1 (Split event). A split event occurs at time t if an arc of EW(P, t) collides with another arc or
a segment of EW(P, t), thereby splitting EW(P, t′) into two wavefront components for t′ > t.

Definition 5.2 (Edge event). An edge event occurs at time t if the two end-points of an edge e of EW(P, t)
coincide in EW(P, t), thus causing e to disappear and to be absent from EW(P, t′) for t′ > t.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

84

883

Definition 5.3 (Break-through event). A break-through event occurs at time t if, for a dominant convex
vertex vi of P , the wavefront edges induced by the polygon edges vi−1vi and vivi+1 are collinear at time t.
In this case EW(P, t′) will contain a circular arc centered at vi for t′ > t.

That is, a break-through event witnesses the birth of a new skeletal region and causes a new circular arc
to appear on the wavefront. Elementary mathematics shows that a break-through event can occur at most
once per convex vertex. An edge event may occur as one offset circle dominates a second one. The locations
of edge events and break-through events coincide with nodes of Sw(P). At an edge event one of the faces
induced by Sw(P) is closed.

16
8

15

7

10

6

9

(a)

16
8

15

7

10

6

9

(b)

16
8

15

7

10

6

9

(c)

16
8

15

7

10

6

9

(d)

16
8

15

7

10

6

9

(e)

16
8

15

7

10

6

9

(f)

Figure 7: (a) Sample variable-radius skeleton (VRS) of a polygon and (b) a family of wavefronts. The
numbers next to the vertices of the polygon indicate their weights. (c) Initial wavefront; (d) break-through
event; (e) split event; (f) edge event. The location of each event is marked by a red dot, and the wavefront
edge that appears or disappears is drawn in orange. The radii of the disks centered at the polygon vertices
are directly proportional to the weights that are associated with them. Note that after the split event that is
depicted in (e) the wavefront consists of two separate wavefront components.

This event-based description of the VRS already implies a simple construction strategy. All events are
stored in a priority queue Q ordered by the times of their occurrences. Every wavefront component is a
curvilinear chain oriented counter-clockwise. It is represented by a doubly-linked list. Every wavefront edge
holds a pointer to its predecessor and its successor in the corresponding wavefront component. Additionally,
every input site stores the wavefront edges which it is associated with in a self-balancing binary search-tree in
counter-clockwise order.

Initially, the times of all potential split events as well as all break-through events are computed and pushed
to Q. Furthermore, for every wavefront segment that shrinks to zero length an edge event is inserted into Q.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

85

884

After the initialization phase is completed the individual events are successively popped from Q. Assume that
σ is the current event that takes place at time tσ > 0.

• If σ is a split event then we determine the two wavefront segments e1 and e2 along which the event point
pσ is situated and split the corresponding wavefront component accordingly. Thus, a split event involves
constantly many pointer manipulations and insertions/deletions in the corresponding self-balancing bi-
nary search-trees.

• If σ is an edge event then we remove the corresponding wavefront segment from its respective wavefront
component. Special precautions have to be taken whenever a wavefront segment disappears since one
offset circle c(s2, t) dominates another offset circle c(s1, t) and only one of the disappearing moving
intersections is currently a wavefront vertex; see Figure 8. In this case, we know that w(s1) < w(s2).
We boost the weight of s1 to w(s2) and continue the wavefront propagation. Hence, we will refer
to such an edge event as a boost event. (This strategy is inherited from a similar situation that can
occur for weighted straight skeletons [9].) In order to make sure that we will not miss a split event we
have to compute all collisions of the offset circle of s1 with the other wavefront edges of its wavefront
component.

• Otherwise, σ is a break-through event. We insert a new wavefront edge e at pσ into the respective
wavefront component. Again, we check whether e may have future collisions wavefront edges of its
wavefront component. In such a case we insert the corresponding split event into Q.

Common to all these events is the need to watch for edge events: Whenever two wavefront vertices become
neighbors for the first time we check whether they will coincide at a future point in time. In such a case we
insert the corresponding edge event into Q.

Figure 8: A boost event takes place along the wavefront (marked by the red dot).

The wavefront propagation terminates once all wavefront components have shrunk to points and, thus,
vanished. Recall that the skeletal region of a site s is swept by portions of the offset circle of s. An inductive
argument over all event times shows that every skeletal region does indeed have the desired properties. In
particular, it is connected. With minor modifications the wavefront propagation used to compute a VRS of
weighted points and straight-line segments can be extended to any set of weighted points, weighted straight-
line segments and constantly-weighted circular arcs as input sites: We only need to demand that no pair of
input sites intersects in a point other than a common end-point.

The attentive reader may wonder why we do not need to deal with break-through and boost events also in
the case of GWVDs. After all, the input sites that define a GWVD could also represent the vertices and edges
of a polygon. The key difference is given by the fact that a GWVD is computed within the entire plane. This
implies that a boost event during the construction of a VRS would manifest itself as a domination event in the

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

86

885

case of GWVDs, which causes the wavefront arc whose weight is boosted in the VRS to disappear completely
from the wavefront of the GWVD. During a break-through event three moving intersections coincide in a
single point. Thus, all break-through events are implicitly dealt with at arc events during the construction of
the GWVD.

Lemma 5.1. Let P be a polygon with n vertices. Then VRS Sw(P) has a combinatorial complexity of O(n)
in the worst case.

Proof. Recall that we have exactly one skeletal region for each straight-line segment and for each reflex
vertex, and at most one region for each convex vertex. Hence, the number of skeletal region is linear in n.
Furthermore, Sw(P) is a plane graph where every node that does not coincide with a vertex of P has degree
(at least) three. Euler’s formula for planar graphs implies that also the number of nodes and edges of Sw(P)
is linear in n.

Theorem 5.1. Wavefront propagation allows to compute the variable-radius skeleton of a polygon P with
n vertices in worst-case time O(nr2 + nr log n) and O(nr) space, where r is the total number of reflex and
dominant vertices of P .

Proof. Initially, O(nr) split events have to be computed. Additionally, O(r) break-through events may take
place in the worst case. Every break-through event takes O(n) time since we need another round of checks for
future split events. During every split and break-through event constantly many wavefront edges are generated
that disappear at subsequent edge events. Up to O(r2) boost events can occur, with one event consuming
O(n) time due to a search for future split events. All other events consume at most O(log n) time, since they
require a constant number of lookups, insertions, and/or deletions in a self-balancing binary search tree of size
O(n) or in a priority queue of size O(nr).

6 Implementation and Discussion

We have been working on a prototype implementation of the wavefront-based construction strategy for variable-
radius skeletons in C++. Our implementation operates entirely in two dimensions and is based on conventional
IEEE 754 floating-point arithmetic. The skeletons and offsets shown in Figure 11 and the other figures of this
publication were generated by means of our implementation. We performed runtime tests on approximately
600 weighted polygons with n ∈ {16, 32, 64, . . . , 8192} vertices; see Figure 9. (Larger polygons could not
be tested due to memory constraints.) All weights were chosen randomly in which we allowed the highest
weight to be at most ten-times as big as the lowest one. The polygons were taken from real-world input
provided by companies and from the Salzburg Database of polygonal data [8]. In our tests the number r of
reflex and dominant vertices averaged about 0.8n. All tests were carried out on an Intel Xeon E5-2687W v4
processor clocked at 3.0GHz. These tests support our conjecture that the super-quadratic time bound given
in Theorem 5.1 is far too pessimistic for practical applications.

However, the bound O(r2) on the number of boost events is sharp in the worst case: One can specify a
polygon and select appropriate vertex weights such that a cascade of boost events occurs, where the weights of
i−1 circular arcs of the wavefront get boosted during the i-th boost event. Such a setting is highly contrived,
though! Our test runs let us conclude that one is more likely to see no boost event at all than to see even
just a few such events during one wavefront propagation.

Additionally, we performed several sample test runs in which we bounded the difference between the highest
as well as the lowest weighted vertex by a small constant factor, or assigned gradually increasing weights to
the vertices we encountered whilst walking along the boundary of the respective input polygon; see Figure 10.
Our tests indicate that these special weight-assignment strategies have no significant impact on the overall
performance of our implementation (compared to our standard weight-assignment strategy). In particular, the
respective runtimes were well within the fluctuation range that we encountered during our standard test runs.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

87

886

102 103 104

Input size

200

400

600

800

R
u

n
ti

m
e/
n

2

Figure 9: The plot shows the overall runtime in microseconds divided by n2. Each marker on the x-axis
indicates the number n of input vertices for one out of roughly 600 test polygons.

(a) (b) (c)

Figure 10: Three VRSs inside differently weighted instances of a Sierpinski curve are shown. In (a) and
(b) the corresponding vertex weights have been chosen uniformly at random in which the highest and lowest
weight are within a factor of 10 (for (a)) and 1.2 (for (b)) of each other. In (c) the vertex weights gradually
increase as we walk along the boundary of the input polygon.

The high algebraic degree of the individual bisectors turns the reliable determination of edge events into
a delicate problem on conventional floating-point arithmetic. It turned out to be particularly difficult to deal
with multiple events that happen at almost the same location. Experience drawn from several industrial-
strength implementations of geometric codes carried out within the first author’s group during the last 30
years allowed us to mitigate the numerical problems. Still, we have seen our code produce obviously incorrect
results due to numerical stability problems. Fortunately, random sampling of a few nodes of a VRS followed
by distance computations allows to detect incorrect structures fairly reliably. (And incorrect offsets are also
spotted easily by a human by simple visual inspection.) A potential solution to this problem would be to utilize
exact arithmetic, e.g., by using the Computational Geometry Algorithms Library (CGAL) [2]. However, exact
arithmetic has a hefty computational price tag. In particular, comparisons of event times can no longer be
assumed to take (close to) constant time [9]. (Note that we would require the use of constructors and could
not resort to a realization based entirely on predicates.)

From an algorithmic point of view a natural avenue for future research is to try to reduce the number

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

88

887

of collision/split events computed. Experiments quickly show that many of the quadratically many split
events that are computed a-priori are irrelevant. That is, they have no influence on the subsequent wavefront
propagation. Thus, it would greatly improve the practical performance of our strategy if we were able to filter
out at least some of the unnecessary event computations beforehand. This remark is particularly true if one
would resort to exact arithmetic to schedule all events.

Figure 11: Variable-radius skeletons and families of variable-radius offsets.

7 Constructing Roofs

Similar to other skeletal structures [13], it is also possible to derive three-dimensional terrains from a VRS that
can be used as intricate roofs over polygonal footprints of buildings. For a polygonal footprint P , a point p of

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

89

888

Sw(P), with coordinates (px, py), is lifted to a point in R3 with coordinates (px, py, dw(p, s)). Alternatively,
we can lift a wavefront EW(P, t) for the weighted distance t to z-coordinate t: We get EW(P, t)× {t}.

We refer to such a roof as a variable-radius roof and note that it is guaranteed to drain water. (That is,
it does not contain local minima that form sinks in which water would accumulate.) The individual faces of a
variable-radius roof are given by parts of conics and by ruled surfaces. Figure 12 illustrates examples of such
roofs for some of the polygons and skeletons shown in Figure 11.

Figure 12: Two different views of sample variable-radius roofs. The roof data was generated by our imple-
mentation and then rendered by means of Blender [1].

8 Conclusion

We extend the work by Held et al. [12] and present a wavefront-based construction strategy for generalized
weighted Voronoi diagrams. The obvious practical problem of a GWVD is that a Voronoi region may consist
of several connected components even if the edges of S form a polygon P . Therefore, the GWVD of a polygon
P may have a quadratic combinatorial complexity in the worst case. If such a structure is used to generate
ornamental seams then we would get seam curves at locations inside of P where one would not expect to
see them. Similarly, the faces of variable-radius roofs would hardly match one’s intuition. To remedy this
shortcoming, we introduce the variable-radius skeleton inside a polygon P . It allows to locally control the
spacing of consecutive offset curves by associating multiplicative weights with the vertices of P while still
maintaining connected skeletal regions. Our implementation shows the complexity bounds derived for the
computation of a variable-radius skeleton tend to be too pessimistic in practical applications. An extension
of our strategy to three dimensions would be possible from a purely theoretical point of view. However, an
actual implemention of such an extension should be assumed to be difficult in practice.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

90

889

Acknowledgements

Work supported by Austrian Science Fund (FWF): Grant P31013-N31.

ORCID

Martin Held, http://orcid.org/0000-0003-0728-7545
Stefan de Lorenzo, http://orcid.org/0000-0003-4981-805X

REFERENCES

[1] Blender. http://www.blender.org/.
[2] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org/.
[3] Agarwal, P.K.; Schwarzkopf, O.; Sharir, M.: The Overlay of Lower Envelopes and its Applications.

Discrete & Comp. Geom., 15(1), 1–13, 1996. http://doi.org/10.1007/BF02716576.
[4] Aurenhammer, F.; Edelsbrunner, H.: An Optimal Algorithm for Constructing the Weighted Voronoi

Diagram in the Plane. Pattern Recognition, 17(2), 251–257, 1984. http://doi.org/10.1016/
0031-3203(84)90064-5.

[5] Biedl, T.; Held, M.; Huber, S.; Kaaser, D.; Palfrader, P.: Weighted Straight Skeletons in the Plane.
Comput. Geom. Theory and Appl., 48(2), 120–133, 2015. http://doi.org/10.1016/j.comgeo.2014.
08.006.

[6] Dehne, F.; Klein, R.: “The Big Sweep”: On the Power of the Wavefront Approach to Voronoi Diagrams.
Algorithmica, 17(1), 19–32, 1997. http://doi.org/10.1007/BF02523236.

[7] Edelsbrunner, H.; Seidel, R.: Voronoi Diagrams and Arrangements. Discrete & Comp. Geom., 1(1),
25-44, 1986. http://doi.org/10.1007/BF02187681.

[8] Eder, G.; Held, M.; Jasonarson, S.; Mayer, P.; Palfrader, P.: On Generating Polygons: Introducing the
Salzburg Database. In Proc. 36th Europ. Workshop Comput. Geom., 75:1–75:7, 2020.

[9] Eder, G.; Held, M.; Palfrader, P.: On Implementing Straight Skeletons: Challenges and Experiences. In
Proc. 36th Int. Sympos. Comput. Geom. (SoCG’20), 38:1–38:16, 2020.

[10] Held, M.: Voronoi Diagrams and Offset Curves of Curvilinear Polygons. Comput. Aided Design, 30(4),
287–300, 1998. http://doi.org/10.1016/S0010-4485(97)00071-7.

[11] Held, M.: VRONI: An Engineering Approach to the Reliable and Efficient Computation of Voronoi
Diagrams of Points and Line Segments. Comput. Geom. Theory and Appl., 18(2), 95–123, 2001. http:
//doi.org/10.1016/S0925-7721(01)00003-7.

[12] Held, M.; Huber, S.; Palfrader, P.: Generalized Offsetting of Planar Structures using Skeletons. Comput.
Aided Design & Appl., 13(5), 712–721, 2016. http://doi.org/10.1080/16864360.2016.1150718.

[13] Held, M.; Palfrader, P.: Skeletal Structures for Modeling Generalized Chamfers and Fillets in the Presence
of Complex Miters. Comput. Aided Design & Appl., 16(4), 620–627, 2019. http://doi.org/10.14733/
cadaps.2019.620-627.

[14] Klein, R.; Langetepe, E.; Nilforoushan, Z.: Abstract Voronoi Diagrams Revisited. Comput. Geom. Theory
and Appl., 42(9), 885–902, 2009. http://doi.org/10.1016/j.comgeo.2009.03.002.

[15] Klein, R.; Mehlhorn, K.; Meiser, S.: Randomized Incremental Construction of Abstract Voronoi Diagrams.
Comput. Geom. Theory and Appl., 3(3), 157–184, 1993. http://doi.org/10.1016/0925-7721(93)
90033-3.

[16] Palfrader, P.; Held, M.; Huber, S.: On Computing Straight Skeletons by Means of Kinetic Triangulations.
In Proc. 20th Annu. Europ. Symp. Algorithms (ESA’12), 766–777, 2012. http://doi.org/10.1007/
978-3-642-33090-2_66.

Computer-Aided Design & Applications, 18(5), 2021, 875-889
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

WEIGHTED SKELETAL STRUCTURES FOR VARIABLE-RADIUS OFFSETS

91

ON THE RECOGNITION AND RECONSTRUCTION OF

WEIGHTED VORONOI DIAGRAMS AND

BISECTOR GRAPHS

Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader [Ede+21]

Submitted to:
Computational Geometry: Theory and Applications

Feb. 2021

[Ede+21]

Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader. “On the
Recognition and Reconstruction of Weighted Voronoi Diagrams and Bisector
Graphs”. Submitted to Computational Geometry: Theory and Applications. Feb.
2021

On the Recognition and Reconstruction of Weighted

Voronoi Diagrams and Bisector Graphs

Günther Edera,∗, Martin Helda,∗, Stefan de Lorenzoa,∗, Peter Palfradera,∗

aUniversität Salzburg, Computerwissenschaften, Salzburg, Austria

Abstract

A weighted bisector graph is a geometric graph whose faces are bounded by
arcs that are portions of multiplicatively weighted bisectors of pairs of (point)
sites such that each of its faces is defined by exactly one site. A prominent
example of a bisector graph is the multiplicatively weighted Voronoi diagram
of a finite set of points which induces a tessellation of the plane into Voronoi
faces bounded by circular arcs and straight-line segments. Several algorithms
for computing various types of bisector graphs are known. In this paper we
reverse the problem: Given a partition G of the plane into faces, find a
set of points and suitable weights such that G is a bisector graph of the
weighted points, if a solution exists. If G is a graph that is regular of degree
three then we can decide in O(m) time whether it is a bisector graph, where
m denotes the combinatorial complexity of G. In the same time we can
identify the uniquely defined candidate solution such that G could be its
multiplicatively weighted Voronoi diagram. Additionally, we show that it
is possible to recognize G as a multiplicatively weighted Voronoi diagram
and find all possible solutions in O(m logm) time if G is given by a set of
disconnected lines and circles.

Keywords: Voronoi diagram, bisector graph, recognition, reconstruction,
multiplicative weight

∗Corresponding author
Email addresses: geder@cs.sbg.ac.at (Günther Eder), held@cs.sbg.ac.at

(Martin Held), slorenzo@cs.sbg.ac.at (Stefan de Lorenzo), palfrader@cs.sbg.ac.at
(Peter Palfrader)

Preprint submitted to Elsevier February 18, 2021

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

95

1. Introduction

1.1. Motivation and Related Work

A geometric graph is the fixed embedding of a planar graph in the plane
so that its vertices are represented by points and all its arcs belong to some
specific family of curves, e.g., straight-line segments and circular arcs. We
refer to a geometric graph as a bisector graph if there exists a set of input
sites such that all its arcs lie on bisectors of pairs of sites. Furthermore, it
is required that every face of a bisector graph is defined by exactly one site.
This postulation implies that the degree of every vertex of a bisector graph
is at least three. Several authors deal with the computation of particular
types of weighted bisector graphs and present strategies to construct them
efficiently [1, 2, 3].

In this work we focus on bisector graphs that correspond to a set S
of weighted points in the plane and study the reverse problem: Given G, a
geometric graph that allegedly is a weighted bisector graph, can we recognize
G as such, and if so, can we reconstruct the respective input sites S and
weights σ such that the resulting bisector graph is equal to G? Furthermore,
we will discuss several settings in which we are even able to recognize G as
a special type of bisector graph that is known as multiplicatively weighted
Voronoi diagram; see Figures 1 and 2.

Multiplicatively weighted Voronoi diagrams of points in the plane were
first introduced by Boots [4]. Aurenhammer and Edelsbrunner [1] present
a worst-case optimal algorithm to compute the multiplicatively weighted
Voronoi diagram under the Euclidean distance. Algorithms with a decent
expected-case complexity are due to Har-Peled and Raichel [2] and Held
and de Lorenzo [3]. Har-Peled and Raichel [2] also prove that the expected
combinatorial complexity of the multiplicatively weighted Voronoi diagram
is bounded by O(n log2 n) if the weights of all input points are chosen ran-
domly. Eder and Held [5] describe an incremental algorithm for constructing
the multiplicatively weighted Voronoi diagram under the maximum norm.

Multiplicatively weighted Voronoi diagrams are widely used in wireless
communication to model the coverage areas of sensors or transmitters. If the
devices are heterogeneous and distance to a device is measured by means of
the Euclidean distance weighted by the sensing/transmitting power of the de-
vice then the service areas can be modeled as the regions of (multiplicatively
weighted) Voronoi diagrams of the device positions. See, e.g., [6, 7, 8].

2

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

96

78

76

74

73
71

66

63

62

58

56

54

53

48

46

45

43

41

40

36

34

33

32

30

2523

21

18

16

13

55

Figure 1: The multiplicatively weighted Voronoi diagram (in orange) of 30 input sites in
which the point locations are highlighted by the black dots. The corresponding weights
are written next to them.

The problem studied is motivated by a problem forwarded to us by a
company working on wireless sensor networks: They get a geometric graph
G, a set of sensor positions S and weights σ from an application of one of their
customers. The data received is of a low quality, with very low precision of
all numerical values, such that a subsequent analysis reveals inconsistencies.
That is, the graph G and the weighted Voronoi diagram of S do not seem to
match. Taking only S and σ as input and (re-)computing the corresponding
Voronoi diagram is no option since it may be strikingly different from G.
This is no surprise because it is known that minor changes in the positions
or weights of point sites may change their Voronoi diagram substantially.
Hence, the company’s next-best idea was to take G and try to reconstruct S
and σ.

Ash and Bolker [9] were among the first to study the recognition problem
for unweighted Voronoi diagrams of point sites. Harvingsten [10] presents a
polynomial-time algorithm that is based on linear programming, for recogniz-

3

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

97

63

62

58

54

46

34

33

32

30

13

74

55

(a)

63

62

58

54

46

34

33

32

30

13

74

55

(b)

63

62

58

54

46

34

33

32

30

13

74

55

(c)

Figure 2: In (a) a section of the multiplicatively weighted Voronoi diagram that is depicted
in Figure 1 is shown. The region of the site s that is associated with weight 55 (highlighted
in red) consists of two connected components. Furthermore, (b) and (c) show two different
bisector graphs in which s is only associated with exactly one connected component.

ing whether a given tessellation of Rd is an unweighted Voronoi diagram, and
reconstructing the respective set of d-dimensional input points. Aurenham-
mer’s work [11] on reciprocal figures and projection polyhedra also allows to
characterize and recognize Voronoi diagrams in higher dimensions. Biedl et
al. [12] present a strategy for reconstructing the polygon or planar straight-
line graph from a given straight-skeleton or Voronoi diagram in O(n log n)
time, where n is the number of edges of the input graph.

Aichholzer et al. [13, 14] investigate the realizability of a tree as the
straight skeleton of a polygon. Eder et al. [15] explain how to reconstruct
weighted straight skeletons from geometric trees.

4

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

98

1.2. Preliminaries

Let S be a finite set of n distinct point sites and denote their weight
function by σ : S → R+. That is, σ(s) specifies the weight of the site s ∈ S.
For a point p in the Euclidean plane and a site s ∈ S, the (weighted) distance
from p to s is defined as

dσ(p, s) :=
d(p, s)

σ(s)
,

where d(., .) denotes the standard Euclidean distance. Of course, dσ(p, S) :=
min{dσ(p, s) : s ∈ S}. We follow common Voronoi terminology and define
the (weighted) Voronoi region of s ∈ S as the set of all points in R2 that are
not farther from s than from any other site of S with respect to dσ:

Rσ(s, S) := {p ∈ R2 : dσ(p, s) ≤ dσ(p, S)}.
Then the weighted Voronoi diagram VDσ(S) of S relative to σ is the union
of all region boundaries. (In the sequel, we will simplify the terminology
by dropping the term “weighted” and simply refer to VDσ(S) as Voronoi
diagram of S.) Note that VDσ(S) may have a quadratic combinatorial com-
plexity [1].

Consider a planar geometric graph G embedded in R2 whose edges are
formed by circular arcs. These arcs are allowed to intersect only at common
end-points that we refer to as nodes of G. Every arc of G forms either a full
circle (or degenerates to a line), or ends at a node of degree at least three.
We call such a graph a planar circular-arc graph. The number of faces of
the planar subdivision induced by G is denoted by m. Euler’s Theorem for
planar graphs implies that G has O(m) nodes and O(m) edges. In the sequel
we will use G as our input that we seek to recognize.

1.3. Our Contribution

Consider a circular-arc graph G with m faces. If the edges of G are
given by disjoint circles and lines then we can compute all solutions (S, σ)
in O(m logm) time such that VDσ(S) equals G. If G has nodes and if all
nodes of G are of degree three then we can identify in O(m) time up to two
candidate solutions (S, σ) such that G is a weighted bisector graph of the
points of S with weight function σ. We also show that two different inputs G
may yield the same solution set (S, σ). Hence, whether or not G is an actual
Voronoi diagram rather than only a bisector graph for (S, σ) seems difficult
to decide without explicitly computing VDσ(S).

5

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

99

2. Weighted Bisector

For every site si of S we define a family of circles ci(t) centered at si with
radius t · σ(si). Then the (weighted) bisector b(i, j) between two distinct
sites si and sj is given by the trace of the intersection points ci(t) ∩ cj(t) for
r ∈ R+:

b(i, j) := {ci(t) ∩ cj(t) : t ∈ R+}.
For the sake of descriptional simplicity, we do not explicitly indicate the
dependence of a bisector on σ. And, again, in the sequel we will also drop
the term “weighted”. It is well-known that the bisector b(i, j) between two
sites si and sj forms a circle. (This is easy to see if we recall that ancient
Apollonius of Perga showed that a circle is the set of points of a fixed ratio
of distances to two foci. The two foci in this case are the two input sites, and
their bisector is the Apollonian circle which traces out the ratio of their two
weights.) Furthermore, si and sj lie on a ray that originates at the center
of that circle, with one of them on each side of the circle. Aurenhammer
and Edelsbrunner [1] state two equations to describe the center and radius
of such a bisector circle.

Lemma 1. Consider a circle C with radius r centered at c and two distinct
sites si, sj of S such that si, sj lie on a ray that originates at c and such that
si lies inside of C and sj lies outside of C. Let ri and rj denote the distances
from c to si and sj. Then the circle C equals the bisector circle b(i, j) relative
to appropriate weights σ(si) and σ(sj) if and only if

ri · rj = r2. (1)

Proof. We denote the intersection points of C with the supporting line of
the ray from c to si and sj by p and q. Assume that C equals b(i, j) for
appropriate weights σ(si) and σ(sj). In particular, the points p and q are
known to lie on b(i, j). This implies

r − ri
rj − r

=
σ(si)

σ(sj)
=
r + ri
r + rj

.

A simple algebraic manipulation yields ri · rj = r2.
Now assume that ri · rj = r2. Then

r − ri
rj − r

=
r − r2/rj
rj − r

=
r

rj
· r − rj
r − rj

=
r

rj
=

r

rj
· rj + r

rj + r
=
r + r2/rj
rj + r

=
r + ri
r + rj

.

6

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

100

Therefore, the points p, q are guaranteed to lie on b(i, j). Hence, the line seg-
ment pq forms the diameter of b(i, j) and, thus, b(i, j) equals C. Furthermore,
appropriate weights fulfill the relation r/rj = σ(si)/σ(sj).

Hence, if ri < r < rj then σ(si) < σ(sj). Note that Equation (1) matches
the relation that describes a circular inversion [16]: The inverse H(C, p) of a
point p about a circle C with center c and radius r is a point p′ which lies on
the ray from c through p such that d(c, p) · d(c, p′) = r2. Let H(C,A) denote
the circular inversion of the area A ⊆ R2 about the circle C. Then Lemma 1
can be re-phrased as follows: Two sites si, sj ∈ S have a circle C as their
bisector circle (for appropriate weights) if and only if si = H(C, sj), and vice
versa.

The theory of circular inversion tells us that the inversion of a circle that
is inside of C and passes through its center c is a line, while all other circles
inside of C invert to circles outside of C. The interior of a circular disk D
bounded by a circle C ′ maps to the interior of the inversion of C ′ if D does
not contain c, and to its exterior otherwise. The center c of C is mapped to a
point at infinity and vice versa. Furthermore, as sketched in Figure 3, there
is a simple way to construct sj if C and si are known. Hence, given a circle
with radius r and center c, we may choose any point p inside or outside of the
circle and obtain the inverse point p′ using the equation −⇀cp · −⇀cp′ = r2, where
−⇀uv denotes the vector from u to v and the dot stands for the dot product of
two vectors.

si sj

(1) (2)

(a) Circular bisector

r

si sj

(1) (2)

(b) Circular inversion

Figure 3: (a) The bisector circle (in orange) between the sites si and sj . The weights are
stated in brackets. (b) Simple construction of sj using only si and the circle, based on
circular inversion.

We say that a (non-empty) set X ⊂ R2 is nested inside a set Y ⊂ R2

if R2 \ Y has a bounded connected component Z such that X ⊆ Z. We

7

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

101

conclude this section with an insight into the topological structure of Voronoi
diagrams.

Lemma 2. If Rσ(si, S) is nested inside Rσ(sj, S), for si, sj ∈ S, then
Rσ(si, S) lies entirely within the same bounded connected component of R2 \
Rσ(sj, S).

Proof. Let Rσ(si, S) be nested inside Rσ(sj, S), for some si, sj ∈ S and let
S ′ ⊂ S such that si ∈ S ′. We know that Rσ(si, S) ⊆ Rσ(si, S

′). If Rσ(si, S)
would lie in two different connected components of R2 \ Rσ(sj, S) then even
Rσ(si, {si, sj}) would have to be disconnected, in contradiction to the fact
that Rσ(si, {si, sj}) is bounded by b(i, j).

3. Non-Intersecting Circles and Lines

3.1. No Nested Circles in G
Lemma 1 allows to recognize specific types of input graphs and to recon-

struct suitable point sets. Let G be a collection ofm−1 circles C1, C2, . . . , Cm−1
which do not intersect pairwise and which are not nested. Then G partitions
the plane into m − 1 circular disks D1, D2, . . . , Dm−1 and one unbounded
region. Lemma 2 tells us that every circle of G has to contain a point site.
Hence, |S| = m. We choose an arbitrary point in the unbounded region as
site sm of S. We may also choose its weight arbitrarily. Based on Lemma 1
we obtain point sites s1, . . . , sm−1 of S, with si inside of Ci. The weights
of the remaining sites are thus fixed since the inversion property needs to
hold; cf. Lemma 1. By construction, sm is the highest-weighted site and its
Voronoi region is the unbounded face. Furthermore, due to Lemma 1, we
know that Ci forms the bisector circle b(i,m) for i ∈ {1, 2, . . . ,m− 1}.

Suppose that VDσ(S) differs from G. Then there exist 1 ≤ i < j < m
such that VDσ(S) contains a point p on the bisector b(i, j) which does not
lie on a circle of G. Such a point p cannot simultaneously lie within Di

and Dj. W.l.o.g., p does not lie within Di. Then dσ(p, sm) < dσ(p, si) and,
thus, p /∈ VDσ(S). We conclude that VDσ(S) equals G. Of course, both
recognition and reconstruction can be carried out in O(m) time.

3.2. Nested Circles in G
Let G be a collection of m − 1 circles C1, C2, . . . , Cm−1 which do not

intersect pairwise. They are allowed to be nested, though. Again we denote

8

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

102

the disks defined by these circles by D1, D2, . . . , Dm−1. For 1 ≤ i ≤ m−1, we
denote by fi the face of G inside of Di that is bounded by Ci and, possibly,
some other circles nested inside of Ci. The unbounded face is given by fm
and its “disk” is denoted by Dm. Lemma 2 again implies |S| = m. However,
since the circles may be nested, it is no longer good enough to choose sm
within ∩1≤i≤m−1H(Ci, Di).

D1

D4
D5 D2

D6

D3

(a)

v1

v2
v5

v6

v3

v7

v4

(b)

D2

D1

D3

D4

H(C1, f1)

H(C2, f2)

(c)

Figure 4: (a) An example illustration of G containing nested non-intersecting circles; (b)
The dual graph D of G in (a); (c) An example where there is no solution as H(C1, f1) ∩
H(C2, f2) = ∅.

We construct a dual graph D of G in the following way: For every face fi
we create a node vi in D. Two nodes in D are connected by an edge if their
faces in G are adjacent. Since the circles in G are non-intersecting, D can not
contain a cycle but forms a tree. We turn D into a rooted tree by rooting it
at the node that corresponds to the unbounded face. In Figures 4a and 4b
we illustrate such a setup where v7 is the root node that corresponds to the
unbounded face.

Next we define a solution set, ss(f), for each face f of G as the loci of
points that are feasible for a point site inside of f .

ss(fi) :=

{
Di if vi is a leaf of D,
Di ∩

{⋂
vj is a child of vi H(Cj, ss(fj))

}
otherwise.

In particular, the solution set ss(fm) for the unbounded face fm of G is
obtained by starting at the root node of D and following all branches until
the leaves of D are reached. Then the respective point sets are mapped back
to the unbounded face.

9

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

103

Let si lie within fi. Then an inductive proof immediately implies that
it is necessary for si to lie within ss(fi) for all 1 ≤ i ≤ m. Hence, if ss(fi)
is empty for some 1 ≤ i ≤ m then there exists no set S such that VDσ(S)
matches D; cf. Figure 4c. Otherwise, we can choose an arbitrary point sm
within ss(fm). We may also choose its weight arbitrarily. The positions of all
other sites s1, . . . , sm−1 (and appropriate weights) are obtained by recursively
computing circular inversions of sm, as implied by D.

It remains to argue that this construction is sufficient to ensure that
VDσ(S) matches D. Due to Lemma 1, we know that Ci forms the bisector
circle b(i, j) if sj lies outside of Di and if si is obtained by a circular inversion
of sj about Ci. So suppose that there exist 1 ≤ i < j ≤ m such that
VDσ(S) contains a point on the bisector b(i, j) which does not lie on a circle
of G. The arguments used for non-nested circles imply that this could only
happen if the node vj is an ancestor of the node vi (or vice versa). Since,
by construction, G contains the bisector of si and sj if vi is a child of vj, we
know that there is at least one node vk that is a child of vj and an ancestor
of vi. Hence, Rσ(si, S) ⊆ Di ⊂ Dk ⊂ Dj and Dk equals b(k, j). However,
then every point of Rσ(si, S) is closer to sk than to sj, making it impossible
for si and sj to share a point that belongs to VDσ(S).

The solution set ss(fm) is described by m − 1 circles (or straight lines)
together with sidedness information that tells us on which side of a circle (or
line) the feasible points lie. If ss(fm) is not empty then it forms a face in the
arrangement of the m− 1 circles (and lines). Note that this approach works
also if the circles of D are allowed to touch each other.

We now focus on the actual computation of ss(fm). We start with inter-
preting R2 as the complex plane C. The theory of Möbius transformations
tells us that every circular inversion in C can be modeled as a (potentially con-
jugated) Möbius transformation. Every such Möbius transformation maps
circles and lines to circles and lines. Furthermore, the composition of two
Möbius transformations yields yet another Möbius transformation, which can
be computed by multiplying two matrices of GL2(C), the so-called general
linear group of invertible 2× 2 matrices over C.

Hence, we can proceed as follows: For every non-leaf node of D we set up
the appropriate Möbius transformation. (The identity transformation is used
for the root of D.) Then we apply an in-order traversal to D and, for each
non-leaf node ν other than the root of D, we compute the composition of the
Möbius transformation stored at ν with the Möbius transformation stored
at the parent of ν. This composed Möbius transformation replaces the old

10

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

104

transformation stored at ν. Hence, in O(m) time we can obtain appropriate
transformations of the m− 1 disks associated with all nodes of D except for
its root node.

In order to obtain ss(fm) it remains to compute the intersection of these
disks. The intersection of m − 1 disks or the disks’ complements can be
constructed inO(m logm) time. Brown describes this representation in detail
in his thesis [17]. Aurenhammer and Edelsbrunner [1] use an extended version
to construct the weighted Voronoi diagram. We follow their description and
describe in the following how we apply it to our setting. For every disk we
embed its defining circle in the xy-plane in R3. We choose an arbitrary point
of inversion pi in R3 that does not lie on the xy-plane, e.g., (0, 0, 1) the point
above the origin at z = 1. Note that by using a single circle and a point not
on the circle we can uniquely define a sphere such that both circle and point
lie on the sphere’s boundary. Hence, for each circle we create a unique sphere
in combination with pi. Then, pi lies on all m− 1 spheres. Using pi as point
of inversion we apply a spherical inversion that creates a half-space from
every sphere. For each disk computed for ss(fm) we know whether the disk
or its complement is to be considered. If the disk’s complement is required
then we form the complement of the respective half-space. We can form the
intersection of these m − 1 half-spaces in O(m logm) time. The result is a
convex polyhedron P in R3. To obtain a representation of R2 we invert the
xy-plane using pi as well. The result is a sphere Sxy that contains pi. Then
we intersect P with Sxy. Since P is formed from m − 1 half-spaces it has
a combinatorial complexity of O(m). Hence, we can traverse each facet f
of P and intersect it with Sxy. As each facet is convex as well we find the
intersection for every f in O(|f |) time. We keep the portion of each facet
that lies outside of Sxy. Hence, ss(fm)′ := P ∩ Sxy is constructed in O(m)
time, where Sxy denotes the complement of Sxy. Let e′ denote an edge of P
that is shortened by the intersection process. Let e denote e′ transformed
back to the xy-plane. The two planes that are locally incident at e′ imply
two specific disks with respect to e in the xy-plane. The shortened endpoint
of e′, and e respectively, is the point where the boundaries of the two disks
meet.

Transforming ss(fm)′ back into the xy-plane yields ss(fm) and is accom-
plished in linear time in the size of the intersection. Therefore we obtain
ss(fm) in overall O(m logm) time.

Recall that our circular inversions may create half-planes as well: In case a
transformed circle intersects the center of an inversion circle it is transformed

11

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

105

into a line, i.e., half-plane. Let ` denote such a line in R2. Instead of a
sphere we form a plane in R3 that intersects ` and the inversion point pi.
We take advantage of the inversion property of the plane that intersects the
inversion point, that is, the plane inverts into the same plane. The half-plane
defining ` defines the half-space for the plane and we can apply our half-space
intersection as described above.

3.3. Nested Circles and Lines in G
Let G be a collection of m − 1 circles and lines which do not intersect

pairwise. The circles are allowed to be nested, though. We follow the notation
of the previous section. Let k denote the number of lines `1, . . . , `k in G.
Clearly for k > 1 the lines have to be parallel to be non-intersecting. Since
a line is not finite it can only partition the unbounded face. Hence, the lines
partition the unbounded face into k + 1 unbounded regions. For two sites
si, sj to form a line ` ∈ G as their bisector the sites must have equal weight
and therefore equal distance to `, cf. Section 2. We modify our inversion
function H(., .) such that the inverse of a point about a line is simply its
mirrored image. To obtain a solution we construct the dual graph D for
each unbounded face separately. Then, we compute the solution set for each
tree root v1, . . . , vk+1. Finally, starting at an unbounded face that is incident
to at most one line `, we map its solution arrangement via ` to the next
consecutive face and form the intersection with its solution space. We repeat
this process until we reach the last unbounded face and thereby obtain a full
characterization of the solution.

4. Recognizing G as Bisector Graph

Given a planar circular-arc graph G, we ask whether G is a weighted
bisector graph. If it is a bisector graph, then we seek a set S of suitable sites
and a corresponding weight function σ. That is, we want to find a solution
(S, σ) such that every edge (of the embedding) of G lies on a bisector defined
by two sites of S. Contrary to Section 3 we now assume that G contains at
least one node. For a start, we also assume that all nodes of G are of degree
exactly three.

We begin by studying the structure of a weighted bisector graph by es-
tablishing the following lemmas:

12

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

106

Lemma 3. Let si, sj, sk denote three sites, with σ(si) < σ(sj) < σ(sk).
Then there exists a line ` which contains the centers of all three bisectors
b(i, j), b(j, k), and b(i, k).

Proof. Consider sites si, sj with σ(si) < σ(sj) and their common bisector
arc b(i, j). This circular arc lies on a circle centered at c(i, j); cf. Figure 5.

si sj

b(i, j)

L R
c(i, j)

Figure 5: Two weighted sites and their bisector.

The points L and R are two points on the bisector, equidistant (in
weighted terms) to both si, sj. Point L is of maximal distance and the
point R of minimal distance. Now it holds that

R = si + (sj − si) ·
σ(si)

σ(si) + σ(sj)
=
siσ(si) + siσ(sj) + sjσ(si)− siσ(si)

σ(si) + σ(sj)

=
siσ(sj) + sjσ(si)

σ(si) + σ(sj)
,

and likewise it follows from (si−L)/(sj−L) = σ(si)/σ(sj) that

L =
sjσ(si)− siσ(sj)

σ(si)− σ(sj)
.

Since c(i, j) = 1/2(L+R), we immediately see that

c(i, j) =
sjσ(si)

2 − siσ(sj)
2

σ(si)2 − σ(sj)2
.

Now consider three sites, si, sj, sk with σ(si) < σ(sj) < σ(sk). We want to
show that the centers of their bisector circles, i.e., c(i, j), c(i, k), and c(j, k)
are collinear. Three points are collinear if and only if the area of the triangle

13

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

107

defined by them is zero. Thus, the three points in question are on the same
supporting line if the following determinant vanishes:

D :=

∣∣∣∣∣∣

x(c(i, j)) y(c(i, j)) 1
x(c(i, k)) y(c(i, k)) 1
x(c(j, k)) y(c(j, k)) 1

∣∣∣∣∣∣

where x(p) and y(p) denote the x- and y-coordinates of a point p.
After expanding the determinant we get

D = x(c(i, j)) · (y(c(i, k))− y(c(j, k)))

+ x(c(i, k)) · (y(c(j, k))− y(c(i, j)))

+ x(c(j, k)) · (y(c(i, j))− y(c(i, k)))

=
(x(sj)σ(si)

2 − x(si)σ(sj)
2)
(
y(sk)σ(si)

2−y(si)σ(sk)2
σ(si)2−σ(sk)2 − y(sk)σ(sj)

2−y(sj)σ(sk)2
σ(sj)2−σ(sk)2

)

σ(si)2 − σ(sj)2

+
(x(sk)σ(si)

2 − x(si)σ(sk)
2)
(
y(sk)σ(sj)

2−y(sj)σ(sk)2
σ(sj)2−σ(sk)2 − y(sj)σ(si)

2−y(si)σ(sj)2
σ(si)2−σ(sj)2

)

σ(si)2 − σ(sk)2

+
(x(sk)σ(sj)

2 − x(sj)σ(sk)
2)
(
y(sj)σ(si)

2−y(si)σ(sj)2
σ(si)2−σ(sj)2 − y(sk)σ(si)

2−y(si)σ(sk)2
σ(si)2−σ(sk)2

)

σ(sj)2 − σ(sk)2

= 0,

thus having proved the claim.

Lemma 4. Let si, sj, sk denote three distinct sites. If two of the three bisec-
tors b(i, j), b(j, k), and b(i, k) intersect in a point p, then all three bisectors
intersect in p.

Proof. Assume that b(i, j) and b(j, k) intersect in the point p. Since b(i, j)
is the set of points of equal (weighted) distance to si and sj, and b(j, k) is
the set of points of equal distance to sj and sk, it follows that p has equal
distance to si, sj, and sk. Thus, p also lies on b(j, k).

Corollary 1. Let si, sj, sk denote three distinct sites. Then b(i, j), b(j, k)
and b(i, k) intersect pairwise either in exactly two points, exactly one point,
or not at all.

14

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

108

4.1. Finding Sites from Bisectors

Let v denote a node of degree three of the graph G. This node is the
intersection of three circular arcs, i.e., of the bisector circles of three sites.
We seek the locations of these sites given the bisector arcs. Let i, j, k be the
indices of these three sites, and denote the centers of their bisector circles by
c(i, j), c(j, k), c(i, k); see Figure 6.

Lemma 3 tells us that the centers c(i, j), c(j, k), c(i, k) lie on a line `.
Thus, we can, w.l.o.g., assume the centers to lie on the x-axis and v to be at
coordinates (0, 1). (The general case is reduced to this setting by rotation,
scaling, and translation.)

b(i, k)

c(j, k)c(i, j) c(i, k)

sj
b(i, j)

b(j, k)

sk

si
v

`

Si

Figure 6: Reconstructing the three sites that traced out the orange bisector arcs incident
at node v. A site si necessarily lies on an arbitrary location on the green solution circle
Si. Sites sj and sk then follow by inversions of si across the corresponding bisector.

Next, we set up the conjugated Möbius transforms Hi,j, Hj,k, and Hi,k,
across bisectors b(i, j), b(j, k), and b(i, k), respectively, Furthermore, we con-
catenate all three transforms into a single transform H := Hi,j ◦Hj,k ◦Hi,k.

Let the x-coordinates of c(i, j), c(i, k), and c(j, k) be given by x1, x2, and
x3. Then, the Möbius transform H is given by the matrix product of three
individual transforms. Simple math yields

H =

(
(x1 − x2 + x3 + x1x2x3) (1 + x1x2 − x1x3 + x2x3)
(1 + x1x2 − x1x3 + x2x3) (−x1 + x2 − x3 − x1x2x3)

)
.

Now it must hold that Si = Hi,j(Sj) and Sj = Hj,k(Sk) and Sk = Hi,k(Si),
where Si is a solution set for site si, and Sj and Sk are defined likewise. In
particular, Si = Hi,j(Hj,k(Hi,k(Si))), or equivalently, Si = H(Si).

15

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

109

Solving this equation for Si =: (x, y) yields

y2 + x2 − 2(x1 − x2 + x3 + x1x2x3)

1 + x1x2 − x1x3 + x2x3
x− 1 = 0,

which is a circle with center at coordinates

c(si) =

(
x1 − x2 + x3 + x1x2x3
1 + x1x2 − x1x3 + x2x3

, 0

)

and which goes through the intersection point of all bisectors at (0, 1). Like-
wise, the solution set for Sj and Sk are circles, namely the corresponding
inverses or Möbius transforms of Si.

Therefore, given three intersecting bisectors, we can find sites si, sj, sk
that generate these bisectors. In general the sites are not uniquely defined,
and instead each site lies on a “solution circle”. This establishes Lemma 5.

Lemma 5. Let v denote a node of degree three of G. Let b(i, j), b(i, k), and
b(j, k) define the three arcs that meet at v. Then the sites si, sj, and sk lie on
solution circles Si, Sj, and Sk, which can be constructed. Picking a specific
locus for si on Si automatically fixes the other sites, and vice versa.

4.2. Bisector Graph Recognition

In the following, we describe how to obtain a solution (S, σ) such that
every arc of G lies on one bisector defined by (S, σ), if such a solution exists,
and thereby detect whether G is a bisector graph. Recall that every node of
G has degree three.

Let f1, . . . , fm denote the faces of G, where m ≥ n for n := |S|. Let fi
denote a face of G with a maximal number of boundary nodes. The nodes
on the boundary of fi are given by v1, . . . , vk. We have k > 0 because we
had assumed to have at least one node in G. As each node is given by the
intersection of distinct bisectors, we necessarily have k > 1. In case k = 2, we
apply Lemma 5 to obtain a family of solutions for each face with degree two
and combine these local solutions using the process outlined in Section 3.2.
Note that we are able to handle nested circles in O(m) time whenever G
includes degree-three vertices, as applying the conjugated Möbius transform
on G already yields all feasible sites for the subgraphs of G that contain
vertices. Thus, it is not necessary to compute the entire solution set for the
nested circles in G.

16

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

110

Otherwise, the face fi has k ≥ 3 nodes. Note that it is still possible for
each bounded face to have at most two nodes. However, in that case two or
more nodes will be incident to the unbounded face. Applying Lemma 5 to
one node of fi will yield a family of solutions for the site si for fi. However,
we can even restrict this solution to a constant number of points as follows.
We traverse the boundary of fi, node by node, and apply Lemma 5. Thereby
we produce k solution circles for si, denoted by S1

i , . . . , S
k
i . Necessarily, si is

in the intersection of these solution circles: si =
⋂k
j=1 S

j
i .

Let S1
i and S2

i denote two circles such that S1
i 6= S2

i . Note that a solution
circle Sji computed for vj intersects vj. Thus, for every Sji we can find a
different node (when k ≥ 3) on fi which is not on Sji and so its solution
circle will be different. Therefore, two such circles exist. Hence, the inter-
section si =

⋂k
j=1 S

j
i contains at most two points. If si = ∅ then G is not a

bisector graph. Otherwise, these points are loci for the site, thus establishing
Lemma 6.

Lemma 6. For a face f of G with at least three boundary nodes the set of
solutions for the site of f consists of at most two points.

Every other solution circle intersects either both solution points or reduces
the solution to a single point p. We now assume that the solution consists of
a single point p. (Otherwise we apply the following process to both points.)

We choose p as locus for our site si with arbitrary weight. We use the
identified site si and apply inversions H(., .) via every arc defining fi, ob-
taining all neighboring sites. Then we repeat the process for all neighboring
sites and their neighbors in turn, traversing the entire graph G, breadth first.
Thereby we obtain the solution (S, σ) after O(m) inversions. In every face
processed we verify that the solution circles defined by the boundary nodes
contain the alleged site. If a solution circle does not contain the alleged site
then G does not constitute a bisector graph for this starting point p. (Recall
that we may have up to two starting locations for p.)

4.3. Complexity

We find a face fi with k ≥ 3 nodes in O(m) time. We find the solution
circles in O(1) time per node and intersect them in O(k) time. Using the
resulting intersection point p, we apply the breadth-first traversal, which
takes again O(m) time, as each face f is processed in time linear in the
combinatorial size of the face. Therefore we derive Lemma 7.

17

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

111

Lemma 7. Given a planar circular-arc graph G with m faces, in time O(m)
we can detect whether G constitutes a bisector graph and, if yes, find suitable
(S, σ).

Note that S may contain more than one site on the same locus. This is
admissible for a bisector graph but not for a Voronoi diagram.

4.4. Handling Nodes of Higher Degree

At the start of this section we had assumed that all vertices of G are
of degree three. This restriction can be waived: Consider a vertex of G
with degree larger than three and its incident bisector arc circles. We can
distinguish two fundamentally distinct cases: a) The centers of all the circles
are collinear, or b) not all of them are collinear.

If all centers lie on the same supporting line then we can construct a
Möbius transform H that represents the inversions across all the incident
bisector arcs in the same way as described in the proof of Lemma 5. Once
we have that, we can once more solve si = H(si) and thus obtain all valid
locations for a site. Note that, for instance with degree four vertices and the
bisector circles in specific configurations, it may be that the entire plane is
a valid solution. Other degree-four configurations may yield only the trivial
solution of the intersection point of all bisectors and thus will never appear
in bisector graphs.

If not all centers lie on the same supporting line then we can reduce the
problem to subproblems of smaller size. For instance, if we have a degree-
four vertex, we consider appropriate pairs of centers of the bisector arcs. For
each pair, we construct its supporting line, and its intersection is the center
for another bisector, one that did not have arcs represented in G. Thus, for
each supporting line we now have three bisector arcs, and the procedure from
Lemma 5 yields a solution circle for a site. By intersecting the solution circles
for the different supporting lines we obtain the location of a site. Figure 7
demonstrates this procedure.

5. Recognizing G as Voronoi Diagram

Consider a planar circular-arc graph G. Does there exist a solution set
(S, σ) such that VDσ(S) equals G? Since VDσ(S) is a bisector graph, we start
by applying the bisector-graph detection presented in the previous section.

If G is not recognized as a bisector graph, then it is not a Voronoi diagram.
However, even if we can find a suitable (S, σ), then G still need not be a

18

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

112

c1,2 c2,3

c3,4

c1,4

v

R3
R1

R4

R2

(a)

c1,2 c2,3 c1,3

c3,4

c1,4

(b)

c1,3

SC1

SC2

(c)

s1

s2

s3

s4

(d)

Figure 7: In a bisector graph with nodes of higher degree, we can partition the incident
arcs, construct individual solution sets, and intersect those. (a) Graph G with centers of
the bisector arcs incident at v. For instance, c1,2 is the center of the bisector between sites
s1 and s2, which had traced out regions R1 and R2. (b) Even if we do not have the
bisector given, we can construct the bisector (red) between s1 and s3. (c) Now we have
two systems of three bisectors each: The s1, s2, s3-system, and the s1, s3, s4- system. For
each of them, we can construct solution circles for s1 (green): SC1 and SC2. (d) The
intersection of these solution circles yields a position for s1. The other sites are obtained
by standard spherical inversions across the appropriate bisector arcs.

Voronoi diagram. In Figure 8, we illustrate two examples which both are
bisector graphs for the same pair (S, σ) but only Figure 8b is a Voronoi
diagram. Observe that Figure 8a does not contain the face f in the center
of Figure 8b.

A canonical way to verify whether G is a Voronoi diagram is to compute
VDσ(S) using the approach by Aurenhammer and Edelsbrunner [1]. Their
algorithm is worst-case optimal and runs in O(n2) time and space. Of course,
this is a waste of time if the combinatorial complexity of G is sub-quadratic.

19

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

113

s1

s2

s3 s4

(a)

s1

s2

s3 s4
f

(b)

Figure 8: Given sites S := {s1, . . . , s4} and appropriate weights, then (a) shows a bisector
graph of S and (b) VDσ(S).

Alternatively, one may use the strategies presented by Har-Peled and Raichel
[2] or Held and de Lorenzo [3], which allow to compute VDσ(S) in expected
O(n log3 n) or O(n log4 n) time, respectively, under the assumption that the
corresponding weights are sampled from some random distribution. A final
comparison between the diagram computed and G yields the decision sought:
We find a common node in G and VDσ(S) and apply a breath-first traversal
to compare all nodes and arcs. Therefore, the comparison can be carried out
in O(m) time.

6. Discussion

We present a novel approach for recognizing whether a given planar
circular-arc graph G is a weighted bisector graph, and, provided that this
is the case, for reconstructing the respective input sites. The Möbius trans-
formation is central to our approach, as it allows us to generate a solution
set, or confirm that G is no weighted bisector graph whenever no such set
exists.

Whenever G does not contain nodes, we are even able to determine
whether G is a multiplicatively weighted Voronoi diagram VDσ(S), and to
reconstruct S. If G has been recognized as a bisector graph of (S, σ) then the
main difficulty of verifying that a general bisector graph G matches VDσ(S)
is given by deciding whether all disconnected faces of VDσ(S) that do not
contain their defining sites are also present in G. It remains a question for

20

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

114

future research to confirm that a bisector graph of (S, σ) matches VDσ(S)
without explicitly computing VDσ(S).

Acknowledgements

This work was supported by the Austrian Science Fund (FWF): Grant
P31013.

References

[1] F. Aurenhammer, H. Edelsbrunner, An Optimal Algorithm for Con-
structing the Weighted Voronoi Diagram in the Plane, Pattern Recogn.
17 (2) (1984) 251 – 257. doi:10.1016/0031-3203(84)90064-5.

[2] S. Har-Peled, B. Raichel, On the Complexity of Randomly Weighted
Multiplicative Voronoi Diagrams, Discrete Comput. Geom. 53 (3) (2015)
547–568. doi:10.1007/s00454-015-9675-0.

[3] M. Held, S. de Lorenzo, An Efficient, Practical Algorithm and Imple-
mentation for Computing Multiplicatively Weighted Voronoi Diagrams,
in: Proc. 28th Annu. Europ. Symp. Alg. (ESA’20), 2020, pp. 9:1–9:15.
doi:10.4230/LIPIcs.ESA.2020.9.

[4] B. N. Boots, Weighting Thiessen Polygons, Economic Geography 56 (3)
(1980) 248–259. doi:10.2307/142716.

[5] G. Eder, M. Held, Weighted Voronoi Diagrams in the Maximum Norm,
Internat. J. Comput. Geom. Appl. 29 (03) (2019) 239–250. doi:10.

1142/S0218195919500079.

[6] J. N. Portela, M. S. Alencar, Cellular Coverage Map as a Voronoi Dia-
gram, J. Communication and Information Systems 23 (1) (2008) 22–31.
doi:10.14209/jcis.2008.3.

[7] M. Parter, D. Peleg, On the Relations Between SINR Diagrams and
Voronoi Diagrams, in: Proc. 14th Int. Conf. Ad-hoc, Mobile, and Wire-
less Networks, 2015, pp. 225–237. doi:10.1007/978-3-319-19662-6_

16.

21

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

115

[8] A. R. David González G., Harri Hakula, J. Hämäläinen, Spatial Map-
pings for Planning and Optimization of Cellular Networks, IEEE/ACM
Trans. Networking 26 (1) (2018) 175–188. doi:10.1109/TNET.2017.

2768561.

[9] P. F. Ash, E. D. Bolker, Recognizing Dirichlet Tessellations, Geometriae
Dedicata 19 (2) (1985) 175–206. doi:10.1007/BF00181470.

[10] D. Hartvigsen, Recognizing Voronoi Diagrams with Linear Program-
ming, ORSA J. on Comp. 4 (4) (1992) 369–374. doi:10.1287/ijoc.4.
4.369.

[11] F. Aurenhammer, Recognizing Polytopical Cell Complexes and Con-
structing Projection Polyhedra, J. Symb. Comp. 3 (3) (1987) 249–255.
doi:10.1016/S0747-7171(87)80003-2.

[12] T. Biedl, M. Held, S. Huber, Recognizing Straight Skeletons and Voronoi
Diagrams and Reconstructing Their Input, in: Proc. 10th Int. Sympos.
Voronoi Diagrams in Sci. & Eng. (ISVD’13), 2013, pp. 37–46. doi:

10.1109/ISVD.2013.11.

[13] O. Aichholzer, T. Biedl, T. Hackl, M. Held, S. Huber, P. Palfrader,
B. Vogtenhuber, Representing Directed Trees as Straight Skeletons, in:
Proc. 23rd Int. Symp. Graph Drawing & Network Visualization (GD
2015), 2015, pp. 335–347. doi:10.1007/978-3-319-27261-0_28.

[14] O. Aichholzer, H. Cheng, S. L. Devadoss, T. Hackl, S. Huber, B. Li,
A. Risteski, What Makes a Tree a Straight Skeleton?, in: Proc. 24th
Canad. Conf. Comp. Geom (CCCG’12), 2012, pp. 267–272.

[15] G. Eder, M. Held, P. Palfrader, Recognizing Geometric Trees as Pos-
itively Weighted Straight Skeletons and Reconstructing Their Input,
Internat. J. Comput. Geom. Appl. 29 (03) (2019) 251–267. doi:

10.1142/S0218195919500080.

[16] N. Altshiller-Court, College Geometry: An Introduction to the Modern
Geometry of the Triangle and the Circle, Dover Publications, 2007.

[17] K. Q. Brown, Geometric Transforms for Fast Geometric Algorithms,
Ph.D. thesis, Department of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, PA (1979).

22

RECOGNITION AND RECONSTRUCTION OF WEIGHTED VORONOI DIAGRAMS

116

	I Introduction
	Preliminaries
	Voronoi Diagrams
	The Voronoi Diagram of Points
	The Medial Axis
	Weighted Voronoi Diagrams
	Anisotropic Voronoi diagrams
	Generalized Weighted Voronoi diagrams
	Applications

	Straight Skeletons
	Weighted Straight Skeletons
	Applications

	Convex Partitions

	Contribution
	Generation of Spiral-Like Paths within Planar Shapes
	Computing Low-Cost Convex Partitions
	Efficient Multiplicatively Weighted Voronoi Diagrams
	Weighted Skeletal Structures for Variable-Radius Offsets
	Recognition and Reconstruction of Weighted Voronoi Diagrams

	Bibliography

	II Publications
	Generation of Spiral-Like Paths within Planar Shapes
	Computing Low-Cost Convex Partitions
	Efficient Multiplicatively Weighted Voronoi Diagrams
	Weighted Skeletal Structures for Variable-Radius Offsets
	Recognition and Reconstruction of Weighted Voronoi Diagrams

